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Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prev-
alence of onemillion persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli,
creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF
have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated
Akt signaling axis, increased collagen and a-smooth muscle actin expression, distinct gene expression
profile, and ability to form fibrotic lesions inmodel organisms. Despite the centrality of these fibroblasts in
disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs
of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated
from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full
spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse
lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue
revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised
the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological
mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic
mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict
fibrosis. (Am J Pathol 2014, 184: 1369e1383; http://dx.doi.org/10.1016/j.ajpath.2014.01.012)
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Progressive scarring of the heart, blood vessels, lung, liver,
kidney, and brain is a leading cause of death worldwide.1

Characteristic of these diseases, idiopathic pulmonary
fibrosis (IPF) is a prevalent and progressive process.2e6 In
IPF, the fibroblast population expands within alveolar
structures, resulting in scarred nonfunctional airspaces,
progressive hypoxemia, and death by asphyxiation. As the
disease process evolves, fibrosis spreads contiguously from
affected alveoli into anatomically intact adjacent gas ex-
change units, resulting in an expanding reticular network of
fibrotic tissue.7e12 IPF lung fibroblasts display hallmarks
that distinguish them from normal lung fibroblasts. Aberrant
integrin signaling in the IPF fibroblast leads to sustained
stigative Pathology.

.

activation of proliferation and survival signaling path-
ways13e15; when grafted into model organisms, IPF fibro-
blasts form fibrotic lesions.16,17 Despite their central role in
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mediating progressive fibrotic destruction of the lung, the
origins of the IPF fibroblast are not known.

There is a well-established precedent for stem and pro-
genitor cells as a source of the majority cell population in
healthy and diseased organs. Normal lung tissue contains
stem and progenitor cells that self-renew and give rise to
transit-amplifying cells that maintain cell numbers in the
steady state and mediate repair and regeneration in response
to injury.18e26 Neoplastic tissue contains pathological pro-
genitors that exhibit self-renewal capacity and divide
asymmetrically to produce malignant daughter cells27e32;
disease-mediating progenitor cells have been implicated in
chronic lung allograft rejection.33,34

Here, we report the identification of a subpopulation of
cells in the lungs of patients with IPF with the properties of
mesenchymal progenitors. Gene expression profiling of IPF
lung mesenchymal progenitors distinguished them from
mesenchymal progenitors isolated in a similar manner from
the lungs of patient controls, with enrichment of genes
associated with disease-relevant ontologies. The cellular
progeny of IPF mesenchymal progenitors displayed all of
the diagnostic hallmarks of the IPF fibroblast, including
increased levels of phospho-Akt, increased expression of a-
smooth muscle actin and type I collagen, and the ability to
form fibrotic lesions in two model organisms. Analysis of
IPF lung specimens revealed mesenchymal progenitor cells
and cells bearing determinants of their progeny throughout
the fibrotic reticulum. This is the first report in any pro-
gressive fibrotic disorder that documents diseased tissue
harboring mesenchymal progenitor cells that are cells of
origin for fibrosis-mediating fibroblasts.

Materials and Methods

Study Approval

De-identified patient samples were obtained under a waiver
of informed consent from the University of Minnesota
Institutional Review Board. Animal protocols were
approved and conducted in accordance with the University
of Minnesota Institutional Animal Care and Use Committee
regulations.

Primary Mesenchymal Cell Lines

Eleven primary lung mesenchymal cell lines were estab-
lished from patients who fulfilled diagnostic criteria for IPF,
including a pathological diagnosis of usual interstitial
pneumonia.8 Patient controls were selected to be similar in
age to patients with IPF with nonfibrotic lung disorders. On
the basis of these criteria, we established 10 nonfibrotic
primary control fibroblast lines from lung tissue uninvolved
by the primary disease process: adenocarcinoma (n Z 4),
squamous cell carcinoma (n Z 1), carcinoid tumor (n Z 2),
fibrosarcoma (n Z 1), leiomyosarcoma (n Z 1), or bron-
chiectasis (n Z 1). Cell lines were derived from lungs,
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characterized as mesenchymal cells, and were cultivated as
previously described.35,36

A significant challenge when studying primary cells from
patient samples is the need for ex vivo preparation and in vitro
expansion, procedures that introduceuncontrolledvariables into
the system. In addition, the relative difficulty of acquiring such
samples prevents exact matching of demographic variables. To
address these issues, standard technical variables (eg, sub-
cultivation number, patient age, preparation batch)were tracked
to minimize the bias they introduced into our results. Although
this prevented introduction of systematic bias in our experi-
ments, it does increase themeasurementvariance.Despite this, a
principal components analysis (performed in R using the
prcomp function) of the RNA-Seq data revealed the first prin-
ciple component to partition the samples betweenmesenchymal
progenitor cells and their progeny and the second principal
component to partition the samples between IPF and control.
We did not observe partitioning on the basis of any other
technical variable we tracked. Although we cannot exclude the
possibility that hidden technical confounders influenced the
data, this analysis supports the robustness of our results.

Isolation of Mesenchymal Progenitor Cells

IPF and control mesenchymal progenitor cells were isolated
from primary IPF and control mesenchymal cell cultures at
passage 0 (initial isolate before subcultivation) through
passage 4. To isolate progenitors, primary IPF and control
mesenchymal cells were labeled with mouse antiestage-
specific embryonic antigen 4 (SSEA4) antibody conjugated
to Alexa Fluor 647 and mouse anti-SSEA1 conjugated to
phycoerythrin (BD Biosciences, San Jose, CA). Cells were
sorted on a FACSAria Cell Sorter (BD Biosciences). Cells
that were SSEA4þ and SSEA1� (relative to mouse IgG3 k
isotype control conjugated to Alexa Fluor 647 and phyco-
erythrin) and <12 mm (designated small cells; forward and
side calibrated using a 12-mm mesh; Millipore, Temecula,
CA) were collected.

Multiparameter Flow Cytometry

Primary IPF and control mesenchymal cells were subjected to
cell surface antigen phenotyping with the use of fluorescein
isothiocyanate-, phycoerythrin-, or peridinin chlorophyll pro-
tein complex-cyanine 5.5econjugated antibodies (BD Bio-
sciences) against SSEA1, SSEA4, CD90, CD73, CD105,
CD45, and CD34. Isotype-matched fluorophore-conjugated
IgG antibodies were used as negative controls to set the gates.
Cells were analyzed on a BD Biosciences FACSCalibur flow
cytometer with the use of FlowJo Flow Cytometry Analysis
software version 7.6.5 (TreeStar Inc, Ashland, OR).

Plastic-Adherent Clonal Growth Assay

Single-cell suspensions of SSEA4þ/SSEA1�/small cells
were sparsely plated on plastic tissue culture dishes and
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maintained in Dulbecco’s modified Eagle’s medium
(DMEM)þ 10% fetal bovine serum (FBS; 37�C, 10%CO2, 2
weeks). Enumeration of colony-forming unit fibroblast
adherent colonies was performed microscopically after fixing
cells with methanol and staining with crystal violet.

Tri-Lineage Differentiation Assay

IPF and control SSEA4þ/SSEA1�/small cells were analyzed
for tri-lineage differentiation capacity by using the following
assay kits: StemPro Osteogenesis Differentiation Kit, catalog
number A10072-01; Adipogenesis Differentiation Kit, cata-
log number A10070-01; Chondrogenesis Differentiation Kit,
catalog number A10071-01; Gibco, Grand Island, NY). After
21 days in differentiation culture conditions, cells were fixed
and labeled with antibodies against fatty acid binding protein
4 (adipocytes), osteocalcin (osteocytes), or aggrecan (chon-
drocytes) and visualized by immunofluorescence (all anti-
bodies from R&D Systems, Minneapolis, MN).

RT-PCR

RT-PCR was performed as previously described.36 PCR
reactions were subjected to gel electrophoresis, and only
primers yielding a single product of the appropriate length
were used. We took special care to validate octamer-binding
transcription factor 4 (Oct4A) because of our intent to use it
for immunohistochemical lung tissue analysis. This
included using primer sequences documented to be spe-
cific37 and sequence-verifying the gel-purified PCR product.

Western Blot Analysis

Blots were performed as previously described.13e15

Derivation of Progeny from Mesenchymal Progenitor
Cells

IPF and control progeny (ie, daughter cells) were derived
from SSEA4þ/SSEA1�/small cells that had undergone
fluorescence-activated cell sorting (FACS).

Progeny from a Population of Flow-Sorted Progenitor Cells
IPF and control progenitors were isolated from IPF and
control primary mesenchymal cell cultures by flow cytometry
that selected for SSEA4hi/SSEA1�/small cells. One hundred
progenitors were placed into 3.8-cm2 wells of 12-well tissue
culture clusters and allowed to propagate and differentiate
under tightly standardized conditions (DMEM þ 10% FBS,
37�C, 10% CO2) for 21 days. The resultant cell population
was designated IPF or control progeny.

Progeny from a Single IPF or Control Mesenchymal
Progenitor Cell
Individual SSEA4þ/SSEA1�/small cells (98.88% pure by
postsort analysis) that had undergone FACS from a primary
The American Journal of Pathology - ajp.amjpathol.org
IPF and control mesenchymal cell culture (subcultivation 1)
were placed at a concentration of one cell per well into 96-
well clusters coated with STEMPRO MSC SFM CTS
(Gibco) that contained 2.5% methylcellulose. Cultures were
continued (DMEM þ 10% FBS, 37�C, 10% CO2, 14 days)
until a small number of colonies formed. The two largest
IPF colonies and four largest control colonies were trans-
ferred to separate tissue culture dishes (35 mm) and allowed
to propagate and differentiate (DMEM þ 20% FBS, 37�C,
10% CO2) for 21 days.

Immunohistochemistry

Immunohistochemistry was performed on 4-mm paraffin-
embedded IPF and control lung tissue and mounted on
polylysine-coated slides. The sections were deparaffinized
in xylene, rehydrated through a graded methanol series,
quenched with 0.3% hydrogen peroxide in methanol, and
immersed in a 98�C water bath for 30 minutes in Citrate
Buffer (pH 6.0) for antigen retrieval. Sections were placed
in 5% normal horse serum (Jackson ImmunoResearch
Laboratories, West Grove, PA) to block nonspecific binding
of secondary antibodies. Endogenous avidin and biotin
binding sites were blocked by sequential incubation for 15
minutes each with an Avidin/Biotin Blocking Kit (Vector
Laboratories, Burlingame, CA) and incubated overnight (18
to 20 hours, 4�C) in the monoclonal human primary anti-
bodies, Oct4 clone 10H11$2 (1:500; Millipore), SSEA-4
(1:100; Abcam, Cambridge, MA), and a-smooth muscle
actin (a-SMA; 1:100; Vector Laboratories). Sections were
rinsed with PBS, placed in biotinylated horse anti-mouse
IgG secondary antibody (1:500) for 30 minutes at room
temperature, followed by R.T.U. Horseradish Peroxidase
Streptavidin Complex (Vector Laboratories) for 30 minutes.
Specific antibody binding was detected by using a 3,30

diaminobenzidine peroxidase kit (DAB; Vector Labora-
tories). For double antigen labeling, we followed the pro-
tocol described above in a sequential manner with two
modifications: the reagent used to prevent nonspecific
binding was 5% normal horse serum/5% normal goat serum
in a 1:1 ratio solution for the second antibody, and DAB/Ni
was used as the detection reagent. All sections were coun-
terstained with hematoxylin (Invitrogen, Frederick, MD) for
2 minutes, and PBS was applied to blue for 30 minutes.
Specimens were coverslipped with a Prolong Antifade Kit
(Invitrogen/Molecular Probes) and stored overnight at room
temperature without light before image analysis.

In Vivo Fibrogenesis Assays

Zebrafish Xenotransplantation
Cells stained with a vital dye [either 5 mmol/L carboxy-
fluorescein succinimidyl ester (CFSE) or PKH26 (Sigma-
Aldrich, St. Louis, MO)] were grafted into the central
portion of the zebrafish embryo blastoderm at the oblong-
sphere stages as previously described.16 Embryos were
1371
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immobilized with Tricane after 48 hours. Fluorescent and
corresponding bright field imaging of the CFSE-stained
grafts in live embryos were performed with a Zeiss Axio-
vert upright microscope (Carl Zeiss, Thornwood, NY). After
image acquisition, embryos were fixed with 4% para-
formaldehyde, infiltrated with increasing concentrations of
sucrose/PBS, and cryoembedded in OCT. For immuno-
staining, 5-mm sections were fixed in 100% methanol, rinsed
in PBS, blocked with normal donkey serum, and incubated
with the appropriate primary antibody. To identify engrafted
human cells in zebrafish embryos, sections were incubated
with CD59 [MEM-43] mouse monoclonal antibody (1:500;
Abcam), followed by donkey anti-mouse cyanine 3 (1:500;
Jackson ImmunoResearch Laboratories). Collagen type I
was identified with human anti-procollagen type I antibody
(1:200; Abcam) conjugated with horseradish peroxidase,
and counterstained with H&E. The size of the fibrotic re-
ticulum was quantified as previously described.16

Adoptive Transfer into Immunodeficient Mice
Cells were suspended in PBS (106 cells/mL) and injected
via the tail vein into nonobese diabetic/severe combined
immunodeficient/IL-2 receptor g/b2 microglobulin mice
(The Jackson Laboratory, Bar Harbor, ME) according to a
published protocol.17 Mice were euthanized 60 days after
adoptive transfer of human cells. Histological analysis of
lung tissue was performed on paraffin-embedded and frozen
lung tissue after H&E and trichrome staining. Cells positive
for human b2-microglobulin by immunohistochemistry
(anti-human b2 microglobulin antibody; Santa Cruz
Biotechnology, Inc., Santa Cruz, CA) were identified as
human. The presence of lung fibrotic lesions by histological
analysis served as the primary end point.17

Transcriptional Profiling and Analysis of RNA
Sequencing Data

RNA was isolated from freshly sorted SSEA4þ/SSEA1�/
small cells or their progeny (IPF and control, n Z 4; ie, 16
samples total) and sequenced (50-bp paired-end read run) on
an Illumina Hiseq 2000. Sequence reads were aligned to
hg19 with Tophat 2.0.8 (Bowtie 2.1.0.0, allowing one
mismatch). Only reads that aligned uniquely were kept.
Counts were mapped to genes by using the R package
GenomicRanges (Aboyoun, no date). The count data were
log2 transformed and normalized with quantile normaliza-
tion. Differential expression was identified with the random
variance model modified t-test.38 We used GAGE version
2.8.039 and annotation from the Gene Ontology Con-
sortium40 to identify enriched cellular processes. Input data
were signed (direction of regulation) elog10 (random
variance model P values).

Validity testing was conducted by real-time quantitative
PCR (qPCR) as previously described.41 The four genes
chosen (FLT1, MAP3K8, IGF2BP1, YBX1) were selected
from the 117 genes that met the following two criteria: they
1372
were assigned to the most significant ontologies that
distinguished IPF from control, and among all genes that
were altered (P < 0.05) in both IPF mesenchymal pro-
genitors and IPF progeny relative to their control counter-
parts, the genes chosen displayed co-regulation between IPF
mesenchymal progenitor cells and their progeny (ie, up in
both progenitors and progeny or down in both progenitors
and progeny). Total RNA was isolated and reverse tran-
scribed by using a Taqman Reverse Transcriptase Reagent
Kit (Roche, Indianapolis, IN) and primed with random
hexamers. Primer sequences for selected genes were
selected by using National Center for Biotechnology In-
formation (NCBI) Primer-BLAST. qPCR was performed
with a LightCycler FastStart DNA MasterPLUS SYBR Green
I Kit (Roche). Primer sequences were as follows: FLT1, 50-
ACCAAAGCAATTCCCATGCC-30 (forward), 50-CAGC-
TACGGTTTCAAGCACC-30 (reverse); MAP3K8, 50-GCT-
TCCCTGGAGAGAAACCC-30 (forward), 50-ATTCCTC-
GGTGCTTCCTGTG-30 (reverse); IGF2BP1, 50-ACCTC-
CATTTACGGCCTCTTT-30 (forward), 50-TCTCCCCATT-
TTCCCCTCTTC-30 (reverse); and YBX1, 50-TCATCG-
CAACGAAGGTTTTGG-30 (forward), 50-GCCTTGAAC-
TGGAACACCAC-30 (reverse).
Samples were quantified at the log-linear portion of the

curve by using LightCycler analysis software version 3.5
and compared with an external calibration standard curve.

Data Analysis

For zebrafish data, IPF was represented as an indicator
variable (0 for controls, 1 for patients with IPF). A repeated
measures analysis of variance was used to compare cells
from patients with IPF with cells of controls, with the length
of migration as the outcome variable, IPF as the variable of
interest, and an interaction term for IPF with embryo. For
the mouse data, fibrosis was coded as 0 (absent) or 1 (pre-
sent), and the relationship between IPF and fibrosis was
evaluated with Fisher exact test. Quantitative data are
expressed as means � SD. P < 0.05 was considered sig-
nificant. Principal components analysis was performed in R
by using the prcomp function.

Results

Mesenchymal Progenitor Cells Can Be Isolated from the
Lungs of Patients with IPF

We established primary mesenchymal cell lines from IPF and
control lung tissue.35 From these primary cell lines, we iso-
lated mesenchymal progenitors by FACS on the basis of
expression of SSEA4,42 lack of SSEA1, and size (<12 mm)
(Figure 1A). No consistent differences were found in yields
of SSEA4þ cells from IPF or control primary mesenchymal
cell lines. To characterize the SSEA4þ/SSEA1�/small cell
population, we tested for signature mesenchymal stem/stro-
mal cell (MSC) determinants.43,44 Similar to MSCs, control
ajp.amjpathol.org - The American Journal of Pathology
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and IPF SSEA4þ/SSEA1�/small cells expressed CD73,
CD90, and CD105; both lacked expression of the fibrocyte
determinants CD34 and CD45 (Figure 1B); both expressed
vimentin (Figure 1C); and both were negative for the hema-
topoetic cell determinants CD11, CD19, and human leuko-
cyte antigen DR (data not shown). One defining property of
MSCs is the ability of a single precursor cell, termed a
colony-forming unit fibroblast, to generate plastic-adherent
colonies.45 Both IPF and control SSEA4þ/SSEA1�/small
cells displayed this property (Figure 1D). In common with
Figure 1 Recovery and characterization of SSEA4þ/SSEA1�/small cells from IP
SSEA1�/small cells that had undergone FACS. Primary mesenchymal cell lines we
SSEA4 and low surface expression of SSEA1. Shown are the gates used (solid lines)
region defined as SSEA4þ/SSEA4�. Cells were also sorted on the basis of size (fo
mesh). B: Flow cytometric analysis of SSEA4þ/SSEA1�/small cells for expression
fibrocytes (CD34 and CD45). Data shown are from SSEA4þ/SSEA1�/small cells from
SSEAþ/SSEA1�/small cells were examined for vimentin expression by Western bl
fibroblast assay: SSEA4þ/SSEA1�/small cells were seeded at clonal density onto pl
14 days. Shown are representative images of crystal violet-stained colonies formed
mesenchymal cell lines, each assayed in triplicate. E: SSEA4þ/SSEA1�/small cells
determined by immunoreactivity to anti-FABP4 and the presence of lipid within
chondrocytes, as determined by the presence of aggrecan. Data shown are repres
IPF primary mesenchymal cell lines. F: RT-PCR analysis of IPF and control SSEA4þ/
Sox2, with GAPDH serving as a loading control. Human testicular embryonal carcin
no cDNA as a negative control. Data shown are representative of SSEA4þ/SSEA1�

lines. The Oct4A band was sequenced from one IPF and one control to verify its
panels). FABP4, fatty acid binding protein 4; GAPDH, glyceraldehyde-3-phosphat
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MSCs, both IPF and control SSEA4þ/SSEA1�/small cells
exhibited tri-lineage mesenchymal differentiation capacity
(Figure 1E); expressed mRNA encoding the progenitor
transcription factors Oct4A, sex determining region Y
(SRY)-box 2 (Sox2), and Nanog (Figure 1F); both expressed
active b-catenin; and neither expressed Kruppel-like factor 4
(data not shown). Thus, our studies indicate that primary
mesenchymal cell cultures derived from IPF and control
lungs contain mesenchymal progenitor cells that share
properties with MSCs.
F and control primary mesenchymal cell lines. A: Representative of SSEA4þ/
re sorted by FACS to isolate cells with relatively high surface expression of
to define the SSEA4þ/SSEA1� cell population. The boxed area indicates the
rward and side scatter were calibrated with cells passing through a 12-mm
of cell surface determinants used to define MSCs (CD73, CD90, CD105) and
two control and two IPF primary mesenchymal cell lines (means � SD). C:

ot analysis. GAPDH is shown as a loading control. D: Colony-forming unit
astic tissue culture dishes (500 cells/9.5 cm2) and maintained in culture for
by SSEA4þ/SSEA1�/small cells sorted from two control and two IPF primary
were investigated for tri-lineage differentiation capacity: i) adipocytes as
the cells; ii) osteocytes by immunoreactivity to anti-osteocalcin; and iii)
entative of SSEA4þ/SSEA1�/small cells sorted from three control and three
SSEA1�/small cells for progenitor transcription factors: Oct4A, Nanog, and
oma cells (N-TERA) were used as a positive control and PCR with primers but
/small cells sorted from four IPF and four control primary mesenchymal cell
identity. Scale bars: 50 mm (E, left and middle panels); 100 mm (E, right
e dehydrogenase.

1373
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Figure 2 Transcriptional profiling identifies key differences that distinguish IPF from control mesen-
chymal progenitor cells. A: Histogram of gene-by-gene P values that compare IPF and control mesenchymal
progenitor cells. Data shown are from eight independent mesenchymal progenitor cell lines. B: Validation
testing for FLT1, MAP3K8, IGF2BP1, and YBX1. Shown are relative expression levels of each mRNA by qPCR.
Data shown represent the average of two cell lines. C: Heatmap of the 50 most significantly altered genes
that distinguish IPF from control mesenchymal progenitor cells. Colors represent per gene z-score
(expression difference normalized for SD). n Z 4 (IPF and control).

Xia et al
Transcriptional Profiling Identifies Key Differences
That Distinguish IPF from Control Mesenchymal
Progenitor Cells

To elucidate molecular processes that distinguish control and
IPF mesenchymal progenitor cells, we defined steady state
mRNA levels genomewide. There were significant differ-
ences in gene expression between IPF and control mesen-
chymal progenitor cells on the basis of enrichment of genes
with low P values (Figure 2A). A heatmap of the 50 most
significant genes (P < 0.002) revealed a distinct IPF mo-
lecular signature (Figure 2C). To identify significant differ-
ences in disease-relevant functions, we conducted a gene set
enrichment analysis.39,40 IPF mesenchymal progenitor cells
displayed significant differences from controls in several
disease-relevant ontologies, with a large number of gene
ontology terms related to control of gene expression and
proliferation (Supplemental Table S1). To test the validity of
our transcriptional profiling, we directly quantified four
genes that differed between IPF and control mesenchymal
progenitor cells (for detailed selection criteria, see Materials
and Methods): FLT1 and MAP3K8 (both genes showed
elevated expression in IPF mesenchymal progenitors) and
1374
YBX1 and IGF2BP1 (both genes showed elevated expression
in control mesenchymal progenitors). qPCR validated the
transcriptional profiling for three of four genes (FLT1,
MAP3K8, IGF2BP1), with YBX1 showing no significant
difference (Figure 2B). Thus, IPF mesenchymal progenitors
display a pattern of gene expression that distinguishes them
from their control counterparts.

IPF Mesenchymal Progenitor Cells Are Cells of Origin
for IPF Fibroblasts

IPF lung fibroblasts have phenotypic hallmarks that distin-
guish them from controls.13e15,46 They express higher levels
of a-SMA and type I collagen, express lower levels of
caveolin-1 and phosphatase and tensin homologue (PTEN),
and manifest pathological activation of the phosphatidyli-
nositol 3-kinase/Akt signaling pathway, resulting in aber-
rantly high levels of phospho-Akt. To analyze the daughter
cells of mesenchymal progenitors for these hallmarks, we
used FACS to sort SSEA4þ/SSEA1�/small cells from IPF
and control primary mesenchymal cell cultures and allowed
them to propagate and differentiate under tightly standard-
ized conditions (Supplemental Figure S1). Prior work
ajp.amjpathol.org - The American Journal of Pathology
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indicates that as mesenchymal progenitors propagate and
differentiate in vitro, they display typical fibroblast
morphology and lose expression of SSEA4, and Oct4 re-
locates from the nucleus to the cytoplasm where it persists for
a period of time before being degraded.47 In accord with this,
irrespective of origin, the progeny of mesenchymal pro-
genitors displayed typical fibroblast morphology and lost
SSEA4 expression (representative examples shown in
Figure 3A); and Oct4 transited from the nucleus to the
cytoplasm in IPF progeny and was at the limit of detection in
controls (Figure 3B). However, only the daughter cells of IPF
mesenchymal progenitors displayed IPF fibroblast hall-
marks: increased levels of a-SMA, type I collagen, and
phospho-Akt and decreased levels of PTEN and caveolin-1
(Figure 3, C and D). These data showthat IPF mesen-
chymal progenitors produce SSEA4�/nuclear Oct4�/cyto-
plasmic Oct4þ daughter cells with the biochemical hallmarks
of IPF fibroblasts.

When grafted into developing zebrafish embryos or
immunocompromised mice, only IPF fibroblasts form
fibrotic lesions.16,17 As a test of their fibrogenic potential, we
examined whether IPF mesenchymal cell progenitors or their
progeny displayed this behavior in both model organisms.
Numerous studies have indicate that stem/progenitor cells
integrate into the tissues of developing embryos after xeno-
genic transplantation.48e54 Consistently, we found that
normal human bone marrow MSCs, when injected into the
developing zebrafish, formed multiple small grafts that were
incorporated into anatomically normal-appearing tissues and
did not disrupt development. Similar to bone marrow MSCs,
both IPF and control mesenchymal progenitors incorporated
into the developing tissues of phenotypically normal em-
bryos (Supplemental Figure S2). In sharp contrast, the
properties of the mesenchymal progenitor progeny depended
on their origin. Control progeny formed a small mass of
nonmotile cells in the zebrafish, whereas IPF progeny formed
an extensive fibrotic reticulum (Table 1, Figure 3, EeG, and
Supplemental Figure S3, A and B) and expressed human pro-
collagen type I (Supplemental Figure S3C). Results in the
mouse assay paralleled results in the zebrafish, with the
outcome depending on the origin of the mesenchymal pro-
genitor progeny. The lungs of mice receiving the progeny of
control mesenchymal progenitors were anatomically normal;
whereas fibrotic lung lesions formed in all mice receiving the
daughter cells of IPF progenitors (P < 0.0022) (Table 2,
Figure 3H, and Supplemental Figure S4). Thus, only the
progeny of IPF mesenchymal progenitors form fibrotic le-
sions in vivoea defining hallmark of the IPF fibroblast.

Although FACS efficiently isolates a nearly pure popu-
lation of SSEA4þ/SSEA1�/small cells (>98% pure), if even
a small minority subpopulation included differentiated pri-
mary fibroblasts that had a proliferative advantage, after 21
days in culture these cells rather than the progeny of
SSEA4þ/SSEA1�/small cells could be the dominant cell
type. To test for this possibility, we labeled the SSEA4þ/
SSEA1�/small cell population that had undergone FACS
The American Journal of Pathology - ajp.amjpathol.org
with CSFE, a vital dye that covalently binds to intracellular
proteins and is stoichiometrically diluted as cells divide.
When we quantified dye intensity during a 6-day interval,
we observed a single, uniform pattern of CFSE dilution
characteristic of a uniformly proliferating population
(Supplemental Figure S5). This result excluded the possi-
bility that the progeny of SSEA4þ/SSEA1�/small cells were
contaminated by a rapidly proliferating subpopulation of
differentiated IPF fibroblasts.

As direct proof of concept, we generated daughter cells
from a single FACS-sorted IPF mesenchymal progenitor
cell (Figure 4A). When analyzed for IPF fibroblast hall-
marks, the clonal progeny of a single IPF progenitor cell
displayed increased levels of a-SMA and type I collagen,
low levels of caveolin 1 and PTEN accompanied by
increased levels of phospho-Akt (Figure 4B), and formed an
extensive fibrotic reticulum in the zebrafish assay (Figure 4,
C and D, and Supplemental Table S2). Interestingly, the cell
population resulting from a single control progenitor cell
was much smaller than the population from an identically
cultured single IPF progenitor (Supplemental Figure S6A).
As a result there were only enough control cells to perform a
limited Western blot analysis. IPF clonal progeny displayed
higher collagen I and a-SMA expression than did control
clonal progeny (Supplemental Figure S6B). However, a
sufficient number of control clonal progeny were available
to perform the zebrafish xenograft assay. In marked contrast
to IPF clonal progeny, the clonal progeny of a single control
mesenchymal progenitor cell did not form a fibrotic retic-
ulum; engrafted cells were predominantly nonmotile in the
zebrafish (Figure 4D, Supplemental Figure S6C, and
Supplemental Table S2). These data proved that IPF
mesenchymal progenitors can produce progeny manifesting
the phenotypic hallmarks of the IPF fibroblast.

IPF Fibrotic Reticulum Contains Mesenchymal Cells
Expressing Progenitor Determinants

Next, we sought to determine whether cells withmesenchymal
progenitor determinants or their progeny resided in IPF fibrotic
lesions by analyzing lung pathological specimens from pa-
tients with IPF (nZ 12) and patient controls (nZ 5). For this
purpose, on the basis of our results and prior knowledge,47,55

we used SSEA4 expression combined with localization of
Oct4 to identify IPF mesenchymal progenitors (SSEA4þ/nu-
clear Oct4þ/cytoplasmic Oct4�) and their progeny (SSEA4�/
nuclear Oct4�/cytoplasmic Oct4þ) in lung pathological
specimens from patients with IPF (n Z 12).

SSEA4þ cells were interspersed throughout the IPF
fibrotic reticulum in all 12 specimens examined (Figure 5A
and Supplemental Figure S7). To more completely charac-
terize the SSEA4þ cells, we developed a procedure to
immunohistochemically double-stain pathological speci-
mens for SSEA4 and Oct4. Our analysis found numerous
examples of solitary SSEA4þ cells with nuclear Oct4 scat-
tered throughout the fibrotic reticulum of each specimen
1375
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analyzed (n Z 6) (Figure 5B and Supplemental Figure S8).
In addition, fibroblastic foci in all 12 specimens were
heavily populated by clusters of SSEA4� cells that fell into
the following three groups: i) a majority population that
expressed only cytoplasmic Oct4; ii) some cells expressing
both nuclear and cytoplasmic Oct4; and iii) a few cells
displaying only nuclear Oct4 (Figure 5C and Supplemental
Figure S9, A and B).

Mesenchymal cells comprising fibroblastic foci express
high levels of a-SMA.5 When analyzing serial sections of
1376
fibroblastic foci, we found many cells expressing cytoplasmic
Oct4 anda-SMA (nZ 4) (Figure 5D). Thus, a small number of
cells with progenitor determinants (SSEA4þ/nuclear Oct4þ)
populated the IPF fibrotic reticulum, accompanied by a larger
number of mesenchymal cells with characteristics of their
progeny (a-SMAþ/SSEA4�/cytoplasmic Oct4þ). Of note,
relatively intact alveoli adjacent to fibrotic regions did not
containOct4 immunoreactive cells (Supplemental FigureS9C).
The alveolar walls of control lung tissue contained no cells with
Oct4 or SSEA4 immunoreactivity (Supplemental Figure S10,
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Zebrafish Xenograft Data

Cell lines*
Graft-bearing
embryos, N

Normal
embryos, n (%)

Abnormal
embryos, n (%)

Fibrotic
reticulum

IPF primary mesenchymal cellsy 35 4 (11.4) 31 (88.6) Yes
IPF MPCs 43 36 (83.7) 7 (16.3) No
IPF MPC-progeny 65 7 (10.8) 58 (89.2) Yes
Control primary mesenchymal cellsy 48 3 (6.3) 45 (93.7) No
Control MPCs 15 12 (80) 3 (20) No
Control MPC-progeny 95 14 (14.7) 81 (85.3) No

*Data shown are from two IPF cell lines and two control cell lines.
yIn accord with our published data.16

MPCs, mesenchymal progenitor cells.

IPF Progenitor Cells
A and B). However, SSEA4-expressing cells were observed in
small and large airways and vascular structures of control lung
tissue (Supplemental Figure S10C). Thus, IPF mesenchymal
progenitor cells and cells bearing determinants of their daughter
cells populate the fibrotic reticulum in IPF.
Genes and Pathways That Distinguish IPF Mesenchymal
Progenitor Cells and Their Progeny from Their Control
Counterparts Are Co-Regulated

To determine whether IPF and control progeny displayed
disparate patterns of gene expression similar to their pro-
genitors, we defined their steady state mRNA levels
genomewide. In accord with their distinct in vivo phenotypes,
IPF and control progeny displayed significant gene expression
differences (Figure 6A). Validation testing of the daughter
cell gene expression profiling data set for the same four genes
examined in the progenitor data set (FLT1, MAP3K8,
IGF2BP1, YBX1) confirmed the profiling data for all four
genes (Supplemental Figure S11). A heatmap of the 50 most
significant genes (P < 0.002) indicated that IPF progeny
displayed a distinct molecular signature (Figure 6C), and
gene set enrichment analysis indicated major differences in
Figure 3 The progeny of IPF MPCs display IPF fibroblast hallmarks. A: SSEA4
controls and a representative SSEA4 expression distribution of MPCs (ie, SSEA4þ/S
derived from four independent MPC lines [IPF (n Z 2), control (n Z 2)]. B: Oct
collagen I expression. IPF and control progeny were analyzed by Western blot anal
progeny were released from dishes with trypsin, cultured on 2-mg/mL polymer
expression of caveolin-1, phospho-Akt, and PTEN by Western blot analysis. GAPDH
lines were grafted into zebrafish embryos. Zebrafish xenograft assay (E). The prog
zebrafish embryos, and microscopically analyzed in live embryos after 48 hours. S
representative of at least 58 embryos per cell line. Arrows point to graft locatio
microphthalmia, pericardial edema, upper right panel) to mild (head lump, lowe
left. F: Zebrafish xenograft assay with three-dimensional reconstruction. Control a
analyzed by single-photon confocal scanning. Shown are representative three-dim
grafting (arrows point to grafts). G: Shown is quantification of aggregated lengt
progeny from seven independent MPC lines were injected into the tail vein of mice
progenitor cells). Human cells were identified with anti-human b2 microglobulin
lesions, and trichrome stains of perivascular fibrotic lesions. Not shown here (Supp
control progenitors. G: Data are expressed as follows: the horizontal line in the m
the box mark the 75th and 25th percentiles; the whiskers above and below the bo
nZ 26 (G, IPF grafts); nZ 27 (G, control grafts); nZ 4 (H, IPF); nZ 3 (H, cont
reticulum length IPF versus control (G). Scale bars: 250 mm (E); 50 mm (F); 200 mm
type I collagen; e, eye; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MPC,
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many of the same ontologies that distinguish IPF from con-
trol progenitors (Supplemental Table S3). To determine
whether there was genomewide concordance between IPF
mesenchymal progenitor cells and their progeny, all genes
that were altered (P < 0.05) in both IPF mesenchymal
progenitors and IPF progeny relative to their control
counterparts were collected. On the basis of the hypothesis
that some of the defining gene expression characteristics of
IPF mesenchymal progenitors should be retained in their
progeny, we analyzed whether these genes were co-
regulated (ie, up-regulated in both IPF mesenchymal pro-
genitors and IPF progeny or down-regulated in both IPF
mesenchymal progenitors and IPF progeny). Our data
indicated a striking degree of co-regulation among the
genes that distinguish IPF from control (P Z 1.9 � 10�15,
Fisher exact test) (Figure 6B and Table 3). Thus, the mo-
lecular underpinnings of the IPF fibroblast are reflected by
genomewide changes in the transcriptome that can be
traced from its cell of origin.

Discussion

The majority fibroblast population derived from the IPF lung
manifests a distinct pathological phenotype, but its origin
expression of progeny by flow cytometry. For reference, shown are isotype
SEA1�/small cells that have undergone FACS). Data shown are from progeny
4 localization by immunofluorescence, DAPI to stain nuclei. C: a-SMA and
ysis. GAPDH is shown as a loading control. D: Akt signaling. IPF and control
ized collagen matrices for 48 hours, and cell extracts were examined for
is shown as a loading control. EeG: The progeny from four independent MPC
eny of control and IPF progenitors were stained with CFSE, engrafted into
hown are fluorescence (left panels) and bright field (right panels) images
n. Graft-related embryonic deformities ranged from severe (microcephaly,
r right panel). Embryo orientation in the lateral view was from head to the
nd IPF progeny were labeled with PKH26 vital dye. Fluorescent grafts were
ensional computer-generated reconstructions of the grafts 48 hours after
h of all processes in IPF and control grafts. H: Mouse xenograft assay. The
. Shown are representative images of the lungs (received the progeny of IPF
antibody. Sections shown indicate intravascular and perivascular fibrotic

lemental Figure S5) are normal lungs from mice that received the progeny of
iddle of each box indicates the median, and the top and bottom borders of
x mark the 90th and 10th percentiles. n Z 2 (A and EeG, IPF and control);
rol). PZ 0.001, IPF grafts versus control grafts (G); P < 0.0001, composite
(H, left panels); 50 mm (H, right panels). Cav-1, caveolin-1; Collagen 1A1,
mesenchymal progenitor cell; ov, otic vesicle; p, pericardium; Y, yolk sack.
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Table 2 Mouse Xenograft Data

Cell line Subject Fibrotic lesions*

IPF 1 Mouse 1 Yes
IPF 1 Mouse 2 Yes
IPF 1 Mouse 3 Yes
IPF 2 Mouse 4 Yes
IPF 3 Mouse 5 Yes
IPF 4 Mouse 6 Yes
Control 1 Mouse 7 No
Control 2 Mouse 8 No
Control 3 Mouse 9 No
Control 3 Mouse 10 No
Control 3 Mouse 11 No

*P < 0.0022 compares fibrotic lesions resulting from injection of
daughter cells derived from IPF progenitor cells with daughter cells derived
from control progenitor cells.

Xia et al
remains unknown.5 Here, we report the discovery of mesen-
chymal progenitor cells recovered from the IPF lung that
generate fibroblasts displaying the IPF phenotype. We
demonstrate that IPFmesenchymal progenitor cells are present
Figure 4 The progeny of a single IPF mesenchymal progenitor cell displays the IPF
panel: SSEA4þ cells (99% pure) that had undergone FACS were seeded at one cell per
formation. Thearrowdenotes a single SSEA4expressing IPFmesenchymal progenitor cel
progenyof a singleprogenitor cell.Bottompanel:Expansionof the colonyona tissue cu
Western blots of the progeny of mesenchymal progenitors with each lane representing t
clone 2 (lane 4) for collagen 1A1,a-SMA, GAPDH, p-Akt, PTEN, and Cav-1. Results for tw
2) and twoprimary IPFmesenchymal cell lines (designated IPF 1 and2; lanes 5 and6) are
An example representative of seven zebrafish embryos grafted with the progeny of a sing
with nonspecific autofluorescence outlining the yolk sac (left panel). A representative
after grafting shows the formation of a fibrotic reticulum (right panel). D: Quantificatio
Data are expressed as follows: the horizontal line in the middle of each box indicates t
percentiles; the whiskers above and below the boxmark the 90th and 10th percentiles (
(A). Cav-1, caveolin-1; Collagen 1A1, type I collagen; GAPDH, glyceraldehyde-3-phosp
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in the IPFfibrotic reticulum, can be isolated and cultivated from
IPF lungs, and that the daughter cells of these IPF mesen-
chymal progenitors generate fibrotic lesions when grafted
into two model organisms. These findings suggest that the
fibrogenic mesenchymal progenitor cells we have identified
may be causally implicated in the relentless fibroprolifera-
tion characteristic of IPF. Our studies provide the first evi-
dence that pathological mesenchymal progenitor cells can
serve as cells of origin for IPF fibroblasts. This finding has
major implications in efforts to develop therapeutics to
interdict the fibrotic process.
In accord with established protocols, we isolated mesen-

chymal progenitor cells by FACS from primary cultures of
mesenchymal cells by using an antibody to SSEA4, a cell
surface protein expressed by stem cells.42 However, analysis
of the sort did not indicate a discrete subpopulation of
SSEA4þ cells. Instead, it revealed a gradient of SSEA4-
expressing cells. The spectrum ranged from a small sub-
population of cells strongly expressing SSEA4, merging into
a distribution of cells displaying a diminishing amount of
fibroblast phenotype. A: Derivation of progeny from a single progenitor. Upper
well in 96-well dishes coated with methylcellulose and were observed for colony
l (MPC).Middlepanel: Shown is a phase-contrast imageof a colony formedby the
lturedish.B: IPF clonal progenyhave thebiochemical hallmarksof IPFfibroblasts.
he clonal progeny of a single progenitor, designated IPF clone 1 (lane 3) and IPF
o primary control mesenchymal cell lines (designated control 1 and 2; lanes 1 and
shown as a reference. C: IPF clonal progeny formafibrotic reticulum in zebrafish.
le IPF progenitor. Graft forming a fibrotic reticulum (red) appears in head region
three-dimensional computer-generated reconstruction of the xenograft 48 hours
n of aggregated length of all processes in IPF and control clonal progeny grafts.
he median, and the top and bottom borders of the box mark the 75th and 25th
D). nZ 10 (D, IPF grafts); nZ 25 (D, control). P< 0.001 (D). Scale bars: 10 mm
hate dehydrogenase; p-Akt, phospho-Akt; a-SMA, a-smooth muscle actin.
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Figure 5 Mesenchymal progenitor cells and their progeny are present in the IPFfibrotic reticulum.A:Analysis of IPF lung specimens for cells that express SSEA4,
Oct4, and a-SMA. SSEA4-expressing cells in and around the perimeter of an IPF fibroblastic focus. Arrows point to SSEA4 expressing cells. The inset highlights an
SSEA4 immunoreactive cell. B, left panel: Double staining for SSEA4 and Oct4 identified SSEA4þ cells with a nuclear Oct4 staining pattern within the IPF fibrotic
reticulum. SSEA4 is shown in brown (DAB) and Oct4 in black (DAB/Ni). Right panels: High magnification images of cells within the fibroblastic focus shows a
nonimmunoreactive cell, a cell immunoreactive for SSEA4 only, a cell immunoreactive for Oct4 only, and two cells immunoreactive for both SSEA4 andOct4 are shown
(top to bottom, respectively). C: An IPF fibroblastic focus heavily populated with cells displaying cytoplasmic Oct4. D: Serial sections of an IPF fibroblastic focus.
Several cells express SSEA4 in and around the focus; however, most cells within the focus do not display SSEA4 immunoreactivity (left panels). Cells display
cytoplasmic Oct4 anda-smoothmuscle actin in a similar distribution (middle and right panels).nZ 12 (A). Scale bars: 50mm(AeC); 100mm(D, top left and right
panels); 99.8 mm (D, top middle panel); 20 mm (D, bottom left and right panels); 19.8 mm (D, bottom middle panel). a-SMA, a-smooth muscle actin.

IPF Progenitor Cells
SSEA4, that in turn merged with a majority population of
cells lacking SSEA4 expression. Our studies indicate that the
cells strongly expressing SSEA4 also express nuclear Oct4
and share properties with MSCs. As these mesenchymal
progenitors propagated and differentiated, their daughter
cells lost SSEA4 expression, and Oct4 shifted from a nuclear
to cytoplasmic location. Phenotypic analysis of this SSEA4�/
nuclear Oct4�/cytoplasmic Oct4þ daughter cell population
reveals properties associated with their origineIPF or con-
trol. We interpret these data to indicate that the SSEA4�

population of IPF mesenchymal cells represents a differen-
tiation spectrum that ranges from early generations of pro-
genitor cell progeny up to activated myofibroblasts. It will be
important to identify surface determinants to enable accurate
The American Journal of Pathology - ajp.amjpathol.org
classification of these different differentiation states to gain a
full understanding of mesenchymal cell population dynamics
in the IPF lung.

Although healthy tissues contain MSCs that function to
repair tissue after injury,22,56 and great enthusiasm has been
expressed for their therapeutic potential in many diseases,
including IPF,57 there is precedent for mesenchymal pro-
genitors to participate in disease pathogenesis.With the use of
animal models of disease, several studies report that normal
MSCs and bonemarrow progenitor cells can differentiate into
fibroblasts that contribute to pathological processes.56,58,59

Normal MSCs can also produce transforming growth fac-
tor-b and Wnt proteins that can stimulate fibroblast prolifer-
ation.60 In human disease, bone marrow MSCs from patients
1379
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Figure 6 Genes and pathways that distinguish IPF mesenchymal progenitor cells and their
progeny from their control counterparts are co-regulated. Steady state mRNA profiles identify acti-
vation of cellular processes in IPF progeny consistent with their fibrotic phenotype. A: Histogram of
gene-by-gene P values that compare IPF and control progeny. Data shown are from progeny derived
from eight independent mesenchymal progenitor cell lines. B: Shown are log2 fold changes of genes
altered in both IPF mesenchymal progenitors and IPF progeny. Co-regulated genes appear in the right
upper and left lower quadrants of the plot. C: Heatmap of the 50 most significantly altered genes
between IPF and control progeny. Colors represent per gene z-score (expression difference normalized
for SD). Co-regulation of genes distinguishing IPF mesenchymal progenitor cells and IPF progeny from
their control counterparts. P Z 1.9 � 10�15, Fisher exact test (B). n Z 4 (A, IPF and control).

Xia et al
with multiple myeloma manifest durable abnormalities that
promote malignant cell maintenance and progression,61 and
mesenchymal progenitors can be identified at sites of chronic
lung allograft rejection.33,34 Consistently, we identify path-
ological mesenchymal progenitor cells in the IPF lung that
generate progeny that manifest the IPF fibroblast phenotype.
However, it is important to note that our data do not reveal the
origin of the pathological IPF MPCs we have identified;
currently, we lack the tools to determine whether they are
derived from normal resident lung MSCs, bone marrow
MSCs, a pathological de-differentiation event, or another
source. It also remains to be determined whether the pathway
we have discovered in IPF from pathological mesenchymal
progenitors to diseased fibroblasts represents a more general
paradigm for progressive fibrosis in other fibrotic lung dis-
orders or for fibrosis of other organs.

Our study does not directly address the mechanisms
leading to the stable acquisition of a pathological state by IPF
mesenchymal progenitors or their progeny; however, an
elegant study that examined the ability of extracellular matrix
to durably shape fibroblast phenotype provides insight into
1380
how this might occur.62 In that report, lung fibroblasts
cultured on stiff matrices become activated and continue to
express an activated phenotype even when returned to pliable
matrices, providing proof of concept for durable reprog-
ramming of mesenchymal cells on the basis of the mechanics
of the matrix microenvironment. This finding raises the
possibility that a fibrotic extracellular matrix as is found in
IPF could stably skew the phenotype of mesenchymal pro-
genitors and their progeny.
To our knowledge, our study is the first to show that

mesenchymal progenitor cells derived from a naturally
occurring human fibrotic organ can generate progeny with
the biological properties and molecular hallmarks of fibrotic
fibroblasts. Transcriptional profiling revealed a distinct gene
expression profile that distinguished IPF mesenchymal pro-
genitor cells and their daughter cells from controls. Consis-
tent with the idea that the hallmarks of the IPF fibroblast have
their roots in pathological mesenchymal progenitor cells, we
observed striking concordance among the genes and path-
ways that were significantly altered in both IPF mesenchymal
progenitor cells and their progeny relative to controls.
ajp.amjpathol.org - The American Journal of Pathology
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Table 3 List of Co-Regulated Disease-Associated Genes in IPF Mesenchymal Progenitors and IPF Progeny

Genes co-regulated up in both IPF MPC and progeny Genes co-regulated down in both IPF MPC and progeny

1 FAM225B 32 A4GALT 1 SNORD116-20 32 LOC440563
2 MICA 33 SNRK 2 MIR1244-1 33 NDP
3 LHFP 34 ETNK2 3 PQBP1 34 NDUFS3
4 GPNMB 35 PRKACB 4 RPP38 35 NEFH
5 RAB31 36 TMEM184C 5 IGF2BP1 36 YBX1
6 BVES 37 MCTP2 6 WDR6 37 MBIP
7 FICD 38 PSEN1 7 RPL35 38 ATP6V1G2
8 CYGB 39 PLSCR4 8 INO80C 39 GNB1L
9 GJD3 40 PTGFRN 9 NUDT10 40 FOXRED1
10 MAP3K8 41 SERINC1 10 EEF1B2 41 DDX28
11 EDNRB 42 PTPRM 11 FBL 42 DANCR
12 EIF2C4 43 SSR4P1 12 FAU 43 MRPS26
13 A2M 44 TNFSF4 13 DNAJC8 44 MRPL11
14 EPAS1 45 OSGIN2 14 EXOSC7 45 MRPL9
15 STOM 46 BEST1 15 PPRC1 46 SNRPA
16 FLT1 47 TMEM204 16 PES1 47 SRP68
17 SASH1 48 GALNT12 17 RPL36 48 SNORA24
18 GFRA1 49 CCDC68 18 ODZ4 49 SNORA40
19 ZADH2 50 ZNF611 19 SNORD52 50 C1QBP
20 GPR37 51 TMTC1 20 PRPF19 51 C11orf83
21 FAM225A 52 TM2D1 21 GNAZ 52 FSD1
22 OSTM1 53 SGIP1 22 ZNF454 53 PRR3
23 TRHDE 54 ARHGAP5-AS1 23 CHMP4A 54 TUBB1
24 ICAM1 55 RGS9 24 HNRNPC 55 SYNJ2
25 ACER2 56 CABLES1 25 B4GALNT4 56 WDR85
26 NCKAP5 57 ACVRL1 26 IMPDH2
27 GVINP1 58 SCARB2 27 IPW
28 RND3 59 KIAA0247 28 RNF138P1
29 PPAPDC2 60 GAB2 29 KIF5A
30 MITF 61 CLEC2B 30 C1orf31
31 NQO2 31 ZNF880

IPF Progenitor Cells
Moreover, we found that most of these genes and pathways
were co-regulated. Thus, our data indicate that IPF mesen-
chymal progenitor cells display a pathological gene expres-
sion pattern and provide initial mechanistic insight into gene
pathways that define the IPF phenotype. However, we
recognize that this is only the first step. In a disease process as
complex as IPF, unraveling the detailed mechanism(s)
leading to the genesis of IPF mesenchymal progenitor cells
and their differentiation to IPF fibroblasts will likely be un-
veiled slowly and systematically over many years.

Progressive scarring of the heart, blood vessels, lung,
liver, kidney, and brain leads to millions of deaths each year
worldwide. Despite decades of intensive investigation, the
origin of the fibroblasts that mediate fibrotic organ
destruction remained unknown. Several recent publications
that used state-of-the-art lineage tracing technology to
examine the origin of fibrosis-generating fibroblasts after
injury in model organisms have reached definitive, but
different conclusions.63e67 What has been definitively
established in a mouse model is that several different stro-
mal populations can contribute to lung fibrogenesis.67 A
lingering problem in this field has been the paucity of direct
knowledge about human organ fibrosis. Here, we report the
The American Journal of Pathology - ajp.amjpathol.org
discovery and molecular characterization of mesenchymal
progenitor cells, derived from a human fibrotic organ, that
are capable of generating daughter cells that have an acti-
vated phenotype and autonomously form a fibrotic reticulum
in vivo. If confirmed by other investigators, our discovery
provides strong impetus for a therapeutic paradigm shift
focused on developing approaches that target fibrogenic
mesenchymal progenitor cells before they generate fibro-
genic fibroblasts that mediate organ failure.
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