37 research outputs found

    CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk

    Get PDF
    BACKGROUND: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer (CRC) in women. Our aim was to use a genome-wide gene-environment interaction analysis to identify genetic modifiers of CRC risk associated with use of MHT. METHODS: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any MHT, oestrogen-only (E-only) and combined oestrogen-progestogen (E+P) hormone preparations. To test for multiplicative interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case-control logistic regression as primary tests. The Cocktail test was used as secondary test. RESULTS: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and E+P (interaction OR (95% CIs)=0.61 (0.52-0.72), P=4.8 × 10(-9)). The secondary analysis also identified this interaction (Cocktail test OR=0.64 (0.52-0.78), P=1.2 × 10(-5) (alpha threshold=3.1 × 10(-4)). The ORs for association between E+P and CRC risk by rs964293 genotype were as follows: C/C, 0.96 (0.61-1.50); A/C, 0.61 (0.39-0.95) and A/A, 0.40 (0.22-0.73), respectively. CONCLUSIONS: Our results indicate that rs964293 modifies the association between E+P and CRC risk. The variant is located near CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into downstream pathways of CRC etiopathogenesis

    Whole-exome imputation of sequence variants identified two novel alleles associated with adult body height in African Americans

    Get PDF
    Adult body height is a quantitative trait for which genome-wide association studies (GWAS) have identified numerous loci, primarily in European populations. These loci, comprising common variants, explain <10% of the phenotypic variance in height. We searched for novel associations between height and common (minor allele frequency, MAF ≥5%) or infrequent (0.5% < MAF < 5%) variants across the exome in African Americans. Using a reference panel of 1692 African Americans and 471 Europeans from the National Heart, Lung, and Blood Institute's (NHLBI) Exome Sequencing Project (ESP), we imputed whole-exome sequence data into 13 719 African Americans with existing array-based GWAS data (discovery). Variants achieving a height-association threshold of P < 5E−06 in the imputed dataset were followed up in an independent sample of 1989 African Americans with whole-exome sequence data (replication). We used P < 2.5E−07 (=0.05/196 779 variants) to define statistically significant associations in meta-analyses combining the discovery and replication sets (N = 15 708). We discovered and replicated three independent loci for association: 5p13.3/C5orf22/rs17410035 (MAF = 0.10, β = 0.64 cm, P = 8.3E−08), 13q14.2/SPRYD7/rs114089985 (MAF = 0.03, β = 1.46 cm, P = 4.8E−10) and 17q23.3/GH2/rs2006123 (MAF = 0.30; β = 0.47 cm; P = 4.7E−09). Conditional analyses suggested 5p13.3 (C5orf22/rs17410035) and 13q14.2 (SPRYD7/rs114089985) may harbor novel height alleles independent of previous GWAS-identified variants (r2 with GWAS loci <0.01); whereas 17q23.3/GH2/rs2006123 was correlated with GWAS-identified variants in European and African populations. Notably, 13q14.2/rs114089985 is infrequent in African Americans (MAF = 3%), extremely rare in European Americans (MAF = 0.03%), and monomorphic in Asian populations, suggesting it may be an African-American-specific height allele. Our findings demonstrate that whole-exome imputation of sequence variants can identify low-frequency variants and discover novel variants in non-European populations

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention

    Fine Mapping and Identification of BMI Loci in African Americans

    Get PDF
    Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10−5. Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r2 > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10−8) and DHX34 (rs4802349, p = 1.2 × 10−7), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Challenges to be overcome using population-based sampling methods to recruit veterans for a study of post-traumatic stress disorder and traumatic brain injury

    Get PDF
    BACKGROUND: Many investigators are interested in recruiting veterans from recent conflicts in Afghanistan and Iraq with Traumatic Brain Injury (TBI) and/or Post Traumatic Stress Disorder (PTSD). Researchers pursuing such studies may experience problems in recruiting sufficient numbers unless effective strategies are used. Currently, there is very little information on recruitment strategies for individuals with TBI and/or PTSD. It is known that groups of patients with medical conditions may be less likely to volunteer for clinical research. This study investigated the feasibility of recruiting veterans returning from recent military conflicts— Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) - using a population-based sampling method. METHODS: Individuals were sampled from a previous epidemiological study. Three study sites focused on recruiting survey respondents (n = 445) who lived within a 60 mile radius of one of the sites. RESULTS: Overall, the successful recruitment of veterans using a population-based sampling method was dependent on the ability to contact potential participants following mass mailing. Study enrollment of participants with probable TBI and/or PTSD had a recruitment yield (enrolled/total identified) of 5.4%. We were able to contact 146 individuals, representing a contact rate of 33%. Sixty-six of the individuals contacted were screened. The major reasons for not screening included a stated lack of interest in the study (n = 37), a failure to answer screening calls after initial contact (n = 30), and an unwillingness or inability to travel to a study site (n = 10). Based on the phone screening, 36 veterans were eligible for the study. Twenty-four veterans were enrolled, (recruitment yield = 5.4%) and twelve were not enrolled for a variety of reasons. CONCLUSIONS: Our experience with a population-based sampling method for recruitment of recent combat veterans illustrates the challenges encountered, particularly contacting and screening potential participants. The screening and enrollment data will help guide recruitment for future studies using population-based methods
    corecore