1,194 research outputs found
Temporally-aware algorithms for the classification of anuran sounds
Several authors have shown that the sounds of anurans can be used as an indicator of
climate change. Hence, the recording, storage and further processing of a huge
number of anuran sounds, distributed over time and space, are required in order to
obtain this indicator. Furthermore, it is desirable to have algorithms and tools for
the automatic classification of the different classes of sounds. In this paper, six
classification methods are proposed, all based on the data-mining domain, which
strive to take advantage of the temporal character of the sounds. The definition and
comparison of these classification methods is undertaken using several approaches.
The main conclusions of this paper are that: (i) the sliding window method attained
the best results in the experiments presented, and even outperformed the hidden
Markov models usually employed in similar applications; (ii) noteworthy overall
classification performance has been obtained, which is an especially striking result
considering that the sounds analysed were affected by a highly noisy background;
(iii) the instance selection for the determination of the sounds in the training dataset
offers better results than cross-validation techniques; and (iv) the temporally-aware
classifiers have revealed that they can obtain better performance than their nontemporally-aware
counterparts.Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain): excellence eSAPIENS number TIC 570
Técnicas de minería de datos en el proceso de secuencias temporales. Aplicaciones a la clasificación industrial de sonidos
El proceso de secuencias temporales supone un campo de trabajo específico dentro de las técnicas de minería de datos o aprendizaje automático. Entre las tareas de esta disciplina se encuentra la clasificación de secuencias temporales que, por su especificidad, admite el uso de tratamientos diferenciados. Entre los datos con estructura de secuencia temporal pueden destacarse las señales sonoras. Existen numerosas aplicaciones en las que resulta de utilidad la clasificación automatizada de sonidos. En muchas de ellas se requiere que la solución propuesta tenga unas características que podríamos calificar de industriales: robustez, inmunidad al ruido, normalización, operación en tiempo real, bajo consumo y bajo coste. En esta tesis se analizan y comparan distintos métodos de clasificación de sonidos. Para ello, se segmentan los sonidos en fragmentos (ventanas) de muy corta duración y se propone el uso del estándar ISO MPEG-7, cuya aplicación permite obtener un conjunto normalizado de parámetros. Se consideran hasta nueve algoritmos de clasificación que, tomando como patrones distintos sonidos de clases conocidas, realizan una clasificación supervisada sin tener en cuenta el carácter secuencial de las mismas (clasificación no secuencial). Para tener en cuenta el carácter secuencial de los sonidos se proponen y comparan distintos métodos (clasificación secuencial). Para pasar de la clasificación de una ventana, o secuencia de ventanas, a la clasificación de un sonido completo la presente investigación propone una clasificación de series derivadas. Se define una serie (vectorial) derivada como la secuencia de probabilidades de que cada ventana pertenezca a una determinada clase. Se propone la caracterización de las series derivadas como si se tratase de sonidos, es decir, mediante la caracterización de cada uno de sus ventanas usando parámetros MPEG-7 y su posterior clasificación supervisada usando alguno de los algoritmos clasificadores propios de la minería de datos. El resultado del análisis realizado permite afirmar que el uso de los parámetros MPEG-7 constituye una buena alternativa para caracterizar sonidos. En la aplicación analizada el mejor clasificador no secuencial ha resultado ser el árbol de decisión. Por otra parte, la introducción de un método de ventana deslizante aparece como la mejor opción de clasificación secuencial, aunque con una mejora muy discreta sobre la técnica no secuencial. Adicionalmente, se ha podido evidenciar que la clasificación de las series derivadas supone una mejora muy notable en las prestaciones del clasificador. Por último, se ha comprobado que la solución propuesta presenta las características adecuadas para poder proclamar su carácter industrial
Animal Sound Classification using Sequential Classifiers
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. But
the recording, storage and further processing of a huge number of anuran’s sounds, distributed in time and
space, are required to obtain this indicator. It is therefore highly desirable to have algorithms and tools for
the automatic classification of the different classes of sounds. In this paper five different classification
methods are proposed, all of them based on the data mining domain, which try to take advantage of the
sound sequential behaviour. Its definition and comparison is undertaken using several approaches. The
sequential classifiers have revealed that they can obtain a better performance than their non-sequential
counterpart. The sliding window with an underlying decision tree has reached the best results in our tests,
even overwhelming the Hidden Markov Models usually employed in similar applications. A quite
remarkable overall classification performance has been obtained, a result even more relevant considering
the low quality of the analysed sounds.Junta de Andalucía TIC-570
Improving classification algorithms by considering score series in wireless acoustic sensor networks
The reduction in size, power consumption and price of many sensor devices has enabled the deployment of many sensor networks that can be used to monitor and control several aspects of various habitats. More specifically, the analysis of sounds has attracted a huge interest in urban and wildlife environments where the classification of the different signals has become a major issue. Various algorithms have been described for this purpose, a number of which frame the sound and classify these frames,while others take advantage of the sequential information embedded in a sound signal. In the paper, a new algorithm is proposed that, while maintaining the frame-classification advantages, adds a new phase that considers and classifies the score series derived after frame labelling. These score series are represented using cepstral coefficients and classified using standard machine-learning classifiers. The proposed algorithm has been applied to a dataset of anuran calls and its results compared to the performance obtained in previous experiments on sensor networks. The main outcome of our research is that the consideration of score series strongly outperforms other algorithms and attains outstanding performance despite the noisy background commonly encountered in this kind of application
Conjunto metálico con puntas de jabalina procedentes del yacimiento de La Pestaña (Badajoz)
This paper presents an unpublished photograph whith metal pieces from La Pestaña (Badajoz), where two Pastora-type javelins stand out. The photo comes from the archive of Aurelio Cabrera (1870-1936), sculptor and archaeologist. Six of the pieces have been located in the Badajoz Provincial Archaeological Museum, three of which have elemental anaylises. The other six pieces are missing, including the Pastora-type javelins among them. The photograph attests to their existence and origin strengthens the southwestern distribution of this type of javelin point.<br><br>Se amplía la corta serie de puntas tipo Pastora hasta ahora conocidas en la Península Ibérica, gracias a la localización de una fotografía inédita del archivo del escultor y arqueólogo Aurelio Cabrera Gallardo (1870-1936). La fotografía muestra 12 piezas metálicas procedentes de la Dehesa de la Pestaña, en la finca Los Fresnos (Badajoz). Seis de ellas han sido localizadas en el Museo Arqueológico Provincial de Badajoz y tres cuentan con análisis elemental. Otras seis, entre las que están las puntas, están desaparecidas. La fotografía testimonia su existencia y una procedencia que refuerza la distribución suroccidental de este tipo de puntas de jabalina
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome
Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV
Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.
Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets
Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe
Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV
The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V.Peer reviewe
- …