342 research outputs found

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in ∣η∣<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAA≈R_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Differential responses of zooplankton assemblages to environmental variation in temporary and permanent ponds

    Get PDF
    Permanent and temporary wetlands in Mediterranean shrublands represent unique repositories of biodiversity, which are increasingly threatened by human-induced habitat loss. The zooplankton of a permanent (P1) and a temporary pond (T35) in the Natural Reserve of Castelporziano, a rare residual stretch of such a shrubland in Central Italy (Latium), was investigated to: (1) expand and deepen knowledge of these endangered freshwater habitats, which represent a crucial component of Mediterranean biodiversity; (2) identify environmental controls regulating the development of zooplankton communities of each environment; and (3) highlight differences in the adaptive responses of the zooplankton community in relation to the different ecological conditions experienced by permanent and temporary habitats. Despite summer desiccation in T35, the two ponds exhibited a relative homogeneity in hydrological and physico-chemical dynamics. Zooplankton assemblages contained 41 total taxa, of which 32 were found in P1 and 28 in T35. Out of the 41 taxa identified, 22 (> 50%) were exclusively present in one of the two ponds. On a yearly basis, the community dynamics of P1 seemed to be conditioned by physical and chemical factors and by hydrological cycle characteristics, while the community of T35 responded to algal blooms, food competition and predator/prey equilibria rather than correlating to abiotic factors. The main differences amongst zooplankton assemblages were observed over short time scales and occurred both within and between seasons, highlighting the role of some structural taxa that dominated the average composition of the community throughout the year, and the importance of "quick-response" taxa in determining the short-term composition and structure variation of pond zooplankton. A year-round cyclic community succession peculiar to each pond is described

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Adherence to 24-Hour Movement Guidelines for the Early Years and associations with social-cognitive development among Australian preschool children

    Get PDF
    Background: The new Australian 24-Hour Movement Guidelines for the Early Years recommend that, for preschoolers, a healthy 24-h includes: i) ≄180 min of physical activity, including ≄60 min of energetic play, ii) ≀1 h of sedentary screen time, and iii) 10–13 h of good quality sleep. Using an Australian sample, this study reports the proportion of preschool children meeting these guidelines and investigates associations with social-cognitive development. Methods: Data from 248 preschool children (mean age = 4.2 ± 0.6 years, 57% boys) participating in the PATH-ABC study were analyzed. Children completed direct assessments of physical activity (accelerometry) and social cognition (the Test of Emotional Comprehension (TEC) and Theory of Mind (ToM)). Parents reported on children’s screen time and sleep. Children were categorised as meeting/not meeting: i) individual guidelines, ii) combinations of two guidelines, or iii) all three guidelines. Associations were examined using linear regression adjusting for child age, sex, vocabulary, area level socio-economic status and childcare level clustering. Results: High proportions of children met the physical activity (93.1%) and sleep (88.7%) guidelines, whereas fewer met the screen time guideline (17.3%). Overall, 14.9% of children met all three guidelines. Children meeting the sleep guideline performed better on TEC than those who did not (mean difference [MD] = 1.41; 95% confidence interval (CI) = 0.36, 2.47). Children meeting the sleep and physical activity or sleep and screen time guidelines also performed better on TEC (MD = 1.36; 95% CI = 0.31, 2.41) and ToM (MD = 0.25; 95% CI = −0.002, 0.50; p = 0.05), respectively, than those who did not. Meeting all three guidelines was associated with better ToM performance (MD = 0.28; 95% CI = −0.002, 0.48, p = 0.05), while meeting a larger number of guidelines was associated with better TEC (3 or 2 vs. 1/none, p < 0.02) and ToM performance (3 vs. 2, p = 0.03). Conclusions: Strategies to promote adherence to the 24-Hour Movement Behaviour Guidelines for the Early Years among preschool children are warranted. Supporting preschool children to meet all guidelines or more guidelines, particularly the sleep and screen time guidelines, may be beneficial for their social-cognitive development

    EQUIP: Implementing chronic care principles and applying formative evaluation methods to improve care for schizophrenia: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents a case study that demonstrates the evolution of a project entitled "Enhancing QUality-of-care In Psychosis" (EQUIP) that began approximately when the U.S. Department of Veterans Affairs' Quality Enhancement Research Initiative (QUERI), and implementation science were emerging. EQUIP developed methods and tools to implement chronic illness care principles in the treatment of schizophrenia, and evaluated this implementation using a small-scale controlled trial. The next iteration of the project, EQUIP-2, was further informed by implementation science and the use of QUERI tools.</p> <p>Methods</p> <p>This paper reports the background, development, results and implications of EQUIP, and also describes ongoing work in the second phase of the project (EQUIP-2). The EQUIP intervention uses implementation strategies and tools to increase the adoption and implementation of chronic illness care principles. In EQUIP-2, these strategies and tools are conceptually grounded in a stages-of-change model, and include clinical and delivery system interventions and adoption/implementation tools. Formative evaluation occurs in conjunction with the intervention, and includes developmental, progress-focused, implementation-focused, and interpretive evaluation.</p> <p>Results</p> <p>Evaluation of EQUIP provided an understanding of quality gaps <it>and </it>how to address related problems in schizophrenia. EQUIP showed that solutions to quality problems in schizophrenia differ by treatment domain and are exacerbated by a lack of awareness of evidence-based practices. EQUIP also showed that improving care requires creating resources for physicians to help them easily implement practice changes, plus intensive education as well as product champions who help physicians use these resources. Organizational changes, such as the addition of care managers and informatics systems, were shown to help physicians with identifying problems, making referrals, and monitoring follow-up. In EQUIP-2, which is currently in progress, these initial findings were used to develop a more comprehensive approach to implementing and evaluating the chronic illness care model.</p> <p>Discussion</p> <p>In QUERI, small-scale projects contribute to the development and enhancement of hands-on, action-oriented service-directed projects that are grounded in current implementation science. This project supports the concept that QUERI tools can be useful in implementing complex care models oriented toward evidence-based improvement of clinical care.</p

    Spatially controlled cell adhesion on three-dimensional substrates

    Get PDF
    The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and ”-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of ”-patterned scaffolds based on the “Substrate Modification and Replication by Thermoforming” (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60°C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 ”m for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures

    Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain

    Get PDF
    Background. The cellular basis of long term radiation damage in the brain is not fully understood. Methods and Findings. We administered a dose of 25Gy to adult rat brains while shielding the olfactory bulbs. Quantitative analyses were serially performed on different brain regions over 15 months. Our data reveal an immediate and permanent suppression of SVZ proliferation and neurogenesis. The olfactory bulb demonstrates a transient but remarkable SVZ-independent ability for compensation and maintenance of the calretinin interneuron population. The oligodendrocyte compartment exhibits a complex pattern of limited proliferation of NG2 progenitors but steady loss of the oligodendroglial antigen O4. As of nine months post radiation, diffuse demyelination starts in all irradiated brains. Counts of capillary segments and length demonstrate significant loss one day post radiation but swift and persistent recovery of the vasculature up to 15 months post XRT. MRI imaging confirms loss of volume of the corpus callosum and early signs of demyelination at 12 months. Ultrastructural analysis demonstrates progressive degradation of myelin sheaths with axonal preservation. Areas of focal necrosis appear beyond 15 months and are preceded by widespread demyelination. Human white matter specimens obtained post-radiation confirm early loss of oligodendrocyte progenitors and delayed onset of myelin sheath fragmentation with preserved capillaries. Conclusions. This study demonstrates that long term radiation injury is associated with irreversible damage to the neural stem cell compartment in the rodent SVZ and loss of oligodendrocyte precursor cells in both rodent and human brain. Delayed onset demyelination precedes focal necrosis and is likely due to the loss of oligodendrocyte precursor
    • 

    corecore