298 research outputs found
Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans
Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity
The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties.
BACKGROUND/OBJECTIVES: The purpose of this study was to determine whether circulating pro-inflammatory cytokines, elevated with increased fat mass and ageing, were associated with muscle properties in young and older people with variable adiposity. SUBJECTS/METHODS: Seventy-five young (18-49 yrs) and 67 older (50-80 yrs) healthy, untrained men and women (BMI: 17-49 kg/m(2)) performed isometric and isokinetic plantar flexor maximum voluntary contractions (MVCs). Volume (Vm), fascicle pennation angle (FPA), and physiological cross-sectional area (PCSA) of the gastrocnemius medialis (GM) muscle were measured using ultrasonography. Voluntary muscle activation (VA) was assessed using electrical stimulation. GM specific force was calculated as GM fascicle force/PCSA. Percentage body fat (BF%), body fat mass (BFM), and lean mass (BLM) were assessed using dual-energy X-ray absorptiometry. Serum concentration of 12 cytokines was measured using multiplex luminometry. RESULTS: Despite greater Vm, FPA, and PCSA (P0.05), while IL-8 correlated with VA in older but not young adults (r⩾0.378, P⩽0.027). TNF-alpha correlated with MVC, lean mass, GM FPA and maximum force in older adults (r⩾0.458; P⩽0.048). CONCLUSIONS: The age- and adiposity-dependent relationships found here provide evidence that circulating pro-inflammatory cytokines may play different roles in muscle remodelling according to the age and adiposity of the individual.International Journal of Obesity accepted article preview online, 29 August 2016. doi:10.1038/ijo.2016.151
Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans
Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the DeltagprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the DeltagprD has a much lower PKA activity upon starvation. Transcriptomics and (1)H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the DeltagprB and DeltagprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in DeltagprB, while in the DeltagprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the DeltagprD strain. The (1)H NMR analysis revealed significant expression of essential amino acids with elevated levels in the DeltagprD strain, compared to the wild-type and DeltagprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development
Genomics and proteomics approaches to the study of cancer-stroma interactions
<p>Abstract</p> <p>Background</p> <p>The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression.</p> <p>Methods</p> <p>The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells.</p> <p>Results</p> <p>We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (<it>ARID4A</it>, <it>CALR</it>, <it>GNB2L1</it>, <it>RNF10</it>, <it>SQSTM1</it>, <it>USP9X</it>) were validated by real time PCR.</p> <p>Conclusions</p> <p>A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.</p
Defining the Molecular Basis of Tumor Metabolism: a Continuing Challenge Since Warburg's Discovery
Cancer cells are the product of genetic disorders that alter crucial intracellular signaling pathways associated with the regulation of cell survival, proliferation, differentiation and death mechanisms. the role of oncogene activation and tumor suppressor inhibition in the onset of cancer is well established. Traditional antitumor therapies target specific molecules, the action/expression of which is altered in cancer cells. However, since the physiology of normal cells involves the same signaling pathways that are disturbed in cancer cells, targeted therapies have to deal with side effects and multidrug resistance, the main causes of therapy failure. Since the pioneering work of Otto Warburg, over 80 years ago, the subversion of normal metabolism displayed by cancer cells has been highlighted by many studies. Recently, the study of tumor metabolism has received much attention because metabolic transformation is a crucial cancer hallmark and a direct consequence of disturbances in the activities of oncogenes and tumor suppressors. in this review we discuss tumor metabolism from the molecular perspective of oncogenes, tumor suppressors and protein signaling pathways relevant to metabolic transformation and tumorigenesis. We also identify the principal unanswered questions surrounding this issue and the attempts to relate these to their potential for future cancer treatment. As will be made clear, tumor metabolism is still only partly understood and the metabolic aspects of transformation constitute a major challenge for science. Nevertheless, cancer metabolism can be exploited to devise novel avenues for the rational treatment of this disease. Copyright (C) 2011 S. Karger AG, BaselFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed ABC UFABC, CCNH, Santo Andre, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Ciencias Biol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Bioquim, São Paulo, BrazilUniv Fed Sao Carlos UFSCar, DFQM, Sorocaba, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Ciencias Biol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Bioquim, São Paulo, BrazilFAPESP: 10/16050-9FAPESP: 10/11475-1FAPESP: 08/51116-0Web of Scienc
Advanced Virgo Plus: Future Perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
Virgo Detector Characterization and Data Quality during the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave signals in the past few years,
alongside the two LIGO instruments. First, during the last month of the
Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary
mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3):
an 11 months data taking period, between April 2019 and March 2020, that led to
the addition of about 80 events to the catalog of transient gravitational-wave
sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold
exploitation of the detected waveforms require an accurate characterization of
the quality of the data, such as continuous study and monitoring of the
detector noise. These activities, collectively named {\em detector
characterization} or {\em DetChar}, span the whole workflow of the Virgo data,
from the instrument front-end to the final analysis. They are described in
details in the following article, with a focus on the associated tools, the
results achieved by the Virgo DetChar group during the O3 run and the main
prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles
which supercede it and have been posted to arXiv on October 2022. Please use
these new preprints as references: arXiv:2210.15634 (tools and methods) and
arXiv:2210.15633 (results from the O3 run
Virgo Detector Characterization and Data Quality: results from the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave (GW) signals in the past few
years, alongside the two Advanced LIGO instruments. First during the last month
of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact
binary mergers GW170814 and GW170817), and then during the full Observation Run
3 (O3): an 11-months data taking period, between April 2019 and March 2020,
that led to the addition of about 80 events to the catalog of transient GW
sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the
manifold exploitation of the detected waveforms require an accurate
characterization of the quality of the data, such as continuous study and
monitoring of the detector noise sources. These activities, collectively named
{\em detector characterization and data quality} or {\em DetChar}, span the
whole workflow of the Virgo data, from the instrument front-end hardware to the
final analyses. They are described in details in the following article, with a
focus on the results achieved by the Virgo DetChar group during the O3 run.
Concurrently, a companion article describes the tools that have been used by
the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav.
This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has
been split into two companion articles: one about the tools and methods, the
other about the analyses of the O3 Virgo dat
Virgo Detector Characterization and Data Quality: tools
Detector characterization and data quality studies -- collectively referred
to as {\em DetChar} activities in this article -- are paramount to the
scientific exploitation of the joint dataset collected by the LIGO-Virgo-KAGRA
global network of ground-based gravitational-wave (GW) detectors. They take
place during each phase of the operation of the instruments (upgrade, tuning
and optimization, data taking), are required at all steps of the dataflow (from
data acquisition to the final list of GW events) and operate at various
latencies (from near real-time to vet the public alerts to offline analyses).
This work requires a wide set of tools which have been developed over the years
to fulfill the requirements of the various DetChar studies: data access and
bookkeeping; global monitoring of the instruments and of the different steps of
the data processing; studies of the global properties of the noise at the
detector outputs; identification and follow-up of noise peculiar features
(whether they be transient or continuously present in the data); quick
processing of the public alerts. The present article reviews all the tools used
by the Virgo DetChar group during the third LIGO-Virgo Observation Run (O3,
from April 2019 to March 2020), mainly to analyse the Virgo data acquired at
EGO. Concurrently, a companion article focuses on the results achieved by the
DetChar group during the O3 run using these tools.Comment: 44 pages, 16 figures. To be submitted to Class. and Quantum Grav.
This is the "Tools" part of preprint arXiv:2205.01555 [gr-qc] which has been
split into two companion articles: one about the tools and methods, the other
about the analyses of the O3 Virgo dat
- …