110 research outputs found

    An Exploration of Communities of Practice in the STEM Teacher Context: What Predicts Ties of Retention?

    Get PDF
    The STEM teacher workforce in the United States has faced a host of pressing challenges, including teacher shortages, pervasive job dissatisfaction, and high turnover, problems largely attributable to working conditions within schools and districts. These problems have been exacerbated in high-needs districts with fewer resources and more students from low-income communities. Since social network research has shown that workplace relationships are vital for retention, this study investigates the demographic and relational antecedents to what we dub ties of retention. We explore how demographic and relational properties affect the likelihood that teachers have “retention-friendly” networks, characterized by connections important for retention. Our analysis of data from a sample of 120 STEM teachers across five geographic regions identifies key demographics (i.e., site, gender, career changer, and prior teaching experience) and relational properties (network size, positive affect, and perceptions of bridging) associated with ties of retention. We discuss the implications of our findings for the STEM teacher workforce and for teacher education programs

    Science and Mathematics Teacher Communities of Practice: Social Influences on Discipline-Based Identity and Self-Efficacy Beliefs

    Get PDF
    Background Teacher communities of practice, identity, and self-efficacy have been proposed to influence positive teacher outcomes in retention, suggesting all three may be related constructs. Qualitative studies of communities of practice can be difficult to empirically link to identity and self-efficacy in larger samples. In this study, we operationalized teacher communities of practice as specific networks related to teaching content and/or pedagogy. This scalable approach allowed us to quantitatively describe communities of practice and explore statistical relationships with other teacher characteristics. We asked whether these community of practice networks were related to identity and self-efficacy, similar to other conceptualizations of communities of practice. Results We analyzed survey data from 165 in-service K-12 teachers prepared in science or mathematics at 5 university sites across the USA. Descriptive statistics and exploratory factor analyses indicated that math teachers consistently reported smaller communities of practice and lower identity and self-efficacy scores. Correlations revealed that communities of practice are more strongly and positively related to identity than self-efficacy. Conclusion We demonstrate that teacher communities of practice can be described as networks. These community of practice networks are correlated with teacher identity and self-efficacy, similar to published qualitative descriptions of communities of practice. Community of practice networks are therefore a useful research tool for evaluating teacher characteristics such as discipline, identity, self-efficacy, and other possible outcomes (e.g., retention). These findings suggest that teacher educators aiming to foster strong teacher identities could develop pre-service experiences within an explicit, energizing community of practice

    Capturing a Flavivirus Pre-Fusion Intermediate

    Get PDF
    During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting ∼60 Å-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements

    Evaluating climate models with the CLIVAR 2020 ENSO Metrics Package

    Get PDF
    El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate variability on the planet, with far-reaching global impacts. It is therefore key to evaluate ENSO simulations in state-of-the-art numerical models used to study past, present, and future climate. Recently, the Pacific Region Panel of the International Climate and Ocean: Variability, Predictability and Change (CLIVAR) Project, as a part of the World Climate Research Programme (WCRP), led a community-wide effort to evaluate the simulation of ENSO variability, teleconnections, and processes in climate models. The new CLIVAR 2020 ENSO metrics package enables model diagnosis, comparison, and evaluation to 1) highlight aspects that need improvement; 2) monitor progress across model generations; 3) help in selecting models that are well suited for particular analyses; 4) reveal links between various model biases, illuminating the impacts of those biases on ENSO and its sensitivity to climate change; and to 5) advance ENSO literacy. By interfacing with existing model evaluation tools, the ENSO metrics package enables rapid analysis of multipetabyte databases of simulations, such as those generated by the Coupled Model Intercomparison Project phases 5 (CMIP5) and 6 (CMIP6). The CMIP6 models are found to significantly outperform those from CMIP5 for 8 out of 24 ENSO-relevant metrics, with most CMIP6 models showing improved tropical Pacific seasonality and ENSO teleconnections. Only one ENSO metric is significantly degraded in CMIP6, namely, the coupling between the ocean surface and subsurface temperature anomalies, while the majority of metrics remain unchanged

    Dengue-1 Envelope Protein Domain III along with PELC and CpG Oligodeoxynucleotides Synergistically Enhances Immune Responses

    Get PDF
    The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus

    Out of hours workload management: Bayesian inference for decision support in secondary care

    Get PDF
    Objective: In this paper, we aim to evaluate the use of electronic technologies in Out of Hours (OoH) task-management for assisting the design of effective support systems in health care; targeting local facilities, wards or specific working groups. In addition, we seek to draw and validate conclusions with relevance to a frequently revised service, subject to increasing pressures. Methods and Material: We have analysed 4 years of digitised demand-data extracted from a recently deployed electronic task-management system, within the Hospital at Night setting in two jointly coordinated hospitals in the United Kingdom. The methodology employed relies on Bayesian inference methods and parameter-driven state-space models for multivariate series of count data. Results: Main results support claims relating to (i) the importance of data-driven staffing alternatives and (ii) demand forecasts serving as a basis to intelligent scheduling within working groups. We have displayed a split in workload patterns across groups of medical and surgical specialities, and sustained assertions regarding staff behaviour and work-need changes according to shifts or days of the week. Also, we have provided evidence regarding the relevance of day-to-day planning and prioritisation. Conclusions: The work exhibits potential contributions of electronic tasking alternatives for the purpose of data-driven support systems design; for scheduling, prioritisation and management of care delivery. Electronic tasking technologies provide means to design intelligent systems specific to a ward, speciality or task-type; hence, the paper emphasizes the importance of replacing traditional pager-based approaches to management for modern alternatives

    In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection

    Get PDF
    Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization

    Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans

    Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.</p> <p>Results</p> <p>Epstein-Barr Virus (EBV) transformation of B cells isolated from the peripheral blood of a human subject with previous dengue infection was performed. B cell cultures were screened by ELISA for antibodies to dengue (DENV) envelope (E) protein. ELISA positive cultures were cloned by limiting dilution. Three IgG1 human monoclonal antibodies (HMAbs) were purified and their binding specificity to E protein was verified by ELISA and biolayer interferometry. Neutralization and enhancement assays were conducted in epithelial and macrophage-like cell lines, respectively. All three HMAbs bound to E from at least two of the four DENV serotypes, one of the HMAbs was neutralizing, and all were able to enhance DENV infection.</p> <p>Conclusions</p> <p>HMAbs against DENV can be successfully generated by EBV transformation of B cells from patients at least two years after naturally acquired DENV infections. These antibodies show different patterns of cross-reactivity, neutralizing, and enhancement activity.</p
    corecore