5 research outputs found

    Consensus‑based technical recommendations for clinical translation of renal ASL MRI

    No full text
    Objectives This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T feld strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. Methods An international panel of 23 renal ASL experts followed a modifed Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. Results Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or fow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantifcation model. Discussion This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding

    Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging

    Get PDF
    Atherosclerosis is a major cause of global morbidity and mortality that could benefit from novel targeted therapeutics. Recent studies have shown efficient and local drug delivery with nanoparticles, although the nanoparticle targeting mechanism for atherosclerosis has not yet been fully elucidated. Here we used in vivo and ex vivo multimodal imaging to examine permeability of the vessel wall and atherosclerotic plaque accumulation of fluorescently labeled liposomal nanoparticles in a rabbit model. We found a strong correlation between permeability as established by in vivo dynamic contrast enhanced magnetic resonance imaging and nanoparticle plaque accumulation with subsequent nanoparticle distribution throughout the vessel wall. These key observations will enable the development of nanotherapeutic strategies for atherosclerosi

    GM in Asian Auto Markets

    Get PDF
    We combine searches by the CDF and D0 collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb-1 of p-pbar collisions at sqrt{s}=1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard-model Higgs boson in the mass range 162-166 GeV at the 95% C.L

    Comparative map for mice and humans.

    No full text

    Comparative map for mice and humans

    No full text
    corecore