53 research outputs found

    Long receptor residence time of C26 contributes to super agonist activity at the human β2 adrenoceptor

    Get PDF
    Super agonists produce greater functional responses than endogenous agonists in the same assay, and their unique pharmacology is the subject of increasing interest and debate. We propose that receptor residence time and the duration of receptor signaling contribute to the pharmacology of super agonism. We have further characterized the novel β2 adrenoceptor agonist C26 (7-[(R)-2-((1R,2R)-2-benzyloxycyclopentylamino)-1-hydroxyethyl]-4-hydroxybenzothiazolone), which displays higher intrinsic activity than the endogenous ligand adrenaline in cAMP accumulation, β-arrestin-2 recruitment, and receptor internalization assays. C26 recruited β-arrestin-2, and internalized the Green Fluorescent Protein (GFP)-taggedβ2 adrenoceptor at a slow rate, with half-life (t1/2) values of 0.78 ± 0.1 and 0.78 ± 0.04 hours, respectively. This was compared with 0.31 ± 0.04 and 0.34 ± 0.01 hours for adrenaline-mediated β-arrestin-2 recruitment and GFP-β2 internalization, respectively. The slower rate for C26 resulted in levels of β-arrestin-2 recruitment increasing up to 4-hour agonist incubation, at which point the intrinsic activity was determined to be 124.3 ± 0.77% of the adrenaline response. In addition to slow functional kinetics, C26 displayed high affinity with extremely slow receptor dissociation kinetics, giving a receptor residence half-life of 32.7 minutes at 37°C, which represents the slowest dissociation rate we have observed for any β2 adrenoceptor agonist tested to date. In conclusion, we propose that the gradual accumulation of long-lived active receptor complexes contributes to the increased intrinsic activity of C26 over time. This highlights the need to consider the temporal aspects of agonist binding and signaling when characterizing ligands as super agonists

    Uncoupling the structure–activity relationships of β2 adrenergic receptor ligands from membrane binding

    Get PDF
    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein−ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure−activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure−activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions

    Pharmacological characterization of a novel 5-hydroxybenzothiazolone-derived b2-adrenoceptor agonist with functional selectivity for anabolic effects on skeletal muscle resulting in a wider cardiovascular safety window in preclinical studies

    Get PDF
    Copyright ª 2019 by The Author(s) The anabolic effects of b2-adrenoceptor (b2-AR) agonists on skeletal muscle have been demonstrated in various species. However, the clinical use of b2-AR agonists for skeletal muscle wasting conditions has been limited by their undesired cardiovascular effects. Here, we describe the preclinical pharmacological profile of a novel 5-hydroxybenzothiazolone (5-HOB) derived b2-AR agonist in comparison with formoterol as a representative b2-AR agonist that have been well characterized. In vitro, 5-HOB has nanomolar affinity for the human b2-AR and selectivity over the b1-AR and b3-AR. 5-HOB also shows potent agonistic activity at the b2-AR in primary skeletal muscle myotubes and induces hypertrophy of skeletal muscle myotubes. Compared with formoterol, 5-HOB demonstrates comparable full-agonist activity on cAMP production in skeletal muscle cells and skeletal muscle tissue–derived membranes. In contrast, a greatly reduced intrinsic activity was determined in cardiomyocytes and cell membranes prepared from the rat heart. In addition, 5-HOB shows weak effects on chronotropy, inotropy, and vascular relaxation compared with formoterol. In vivo, 5-HOB significantly increases hind limb muscle weight in rats with attenuated effects on heart weight and ejection fraction, unlike formoterol. Furthermore, changes in cardiovascular parameters after bolus subcutaneous treatment in rats and rhesus monkeys are significantly lower with 5-HOB compared with formoterol. In conclusion, the pharmacological profile of 5-HOB indicates superior tissue selectivity compared with the conventional b2-AR agonist formoterol in preclinical studies and supports the notion that such tissue-selective agonists should be investigated for the safe treatment of muscle-wasting conditions without cardiovascular limiting effects

    Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9

    Get PDF
    Abstract: Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer’s disease – outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate

    Construction and validation of the Touch Experiences and Attitudes Questionnaire (TEAQ): a self-report measure to determine attitudes to and experiences of positive touch

    Get PDF
    Despite growing interest in the beneficial effects of positive touch experiences throughout our lives, and individual differences in how these experiences are perceived, a contemporary self-report measure of touch experiences and attitudes for which the factor structure has been validated, is as yet not available. This article describes four studies carried out during the construction and validation of the Touch Experiences and Attitudes Questionnaire (TEAQ). The original TEAQ, containing 117 items relating to positive touch experiences was systematically constructed. Principal component analysis reduced this measure to 57 items and identified six components relating to touch experiences during childhood (ChT) and adult experiences relating to current intimate touch (CIT) and touch with friends and family (FFT). Three attitudinal components were identified, relating to attitude to intimate touch (AIT), touch with unfamiliar people (AUT) and self-care (ASC). The structure of this questionnaire was confirmed through confirmatory factor analysis carried out on data obtained from a second sample. Good concurrent and predictive validity of the TEAQ compared to other physical touch measures currently available was identified. Known-group validity in terms of gender, marital status and age was determined, with expected group differences identified. This study demonstrates the TEAQ to have good face validity, internal consistency, construct validity in terms of discriminant validity, known-group validity and convergent validity, and criterion-related validity in terms of predictive validity and concurrent validity. We anticipate this questionnaire will be a valuable tool for the field of physical touch research

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
    corecore