63 research outputs found
Male synthetic sling versus artificial urinary sphincter trial for men with urodynamic stress incontinence after prostate surgery (MASTER): Study protocol for a randomised controlled trial
© 2018 The Author(s). Background: Stress urinary incontinence (SUI) is a frequent adverse effect for men undergoing prostate surgery. A large proportion (around 8% after radical prostatectomy and 2% after transurethral resection of prostate (TURP)) are left with severe disabling incontinence which adversely effects their quality of life and many are reliant on containment measures such as pads (27% and 6% respectively). Surgery is currently the only option for active management of the problem. The overwhelming majority of surgeries for persistent bothersome SUI involve artificial urinary sphincter (AUS) insertion. However, this is expensive, and necessitates manipulation of a pump to enable voiding. More recently, an alternative to AUS has been developed - a synthetic sling for men which elevates the urethra, thus treating SUI. This is thought, by some, to be less invasive, more acceptable and less expensive than AUS but clear evidence for this is lacking. The MASTER trial aims to determine whether the male synthetic sling is non-inferior to implantation of the AUS for men who have SUI after prostate surgery (for cancer or benign disease), judged primarily on clinical effectiveness but also considering relative harms and cost-effectiveness. Methods/design: Men with urodynamic stress incontinence (USI) after prostate surgery, for whom surgery is judged appropriate, are the target population. We aim to recruit men from secondary care urological centres in the UK NHS who carry out surgery for post-prostatectomy incontinence. Outcomes will be assessed by participant-completed questionnaires and 3-day urinary bladder diaries at baseline, 6, 12 and 24 months. The 24-h urinary pad test will be used at baseline as an objective assessment of urine loss. Clinical data will be completed at the time of surgery to provide details of the operative procedures, complications and resource use in hospital. At 12 months, men will also have a clinical review to evaluate the results of surgery (including another 24-h pad test) and to identify problems or need for further treatment. Discussion: A robust examination of the comparative effectiveness of the male synthetic sling will provide high-quality evidence to determine whether or not it should be adopted widely in the NHS
Global carbon budget 2019
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere â the âglobal carbon budgetâ â is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1Ï. For the last decade available (2009â2018), EFF was 9.5±0.5âGtCâyrâ1, ELUC 1.5±0.7âGtCâyrâ1, GATM 4.9±0.02âGtCâyrâ1 (2.3±0.01âppmâyrâ1), SOCEAN 2.5±0.6âGtCâyrâ1, and SLAND 3.2±0.6âGtCâyrâ1, with a budget imbalance BIM of 0.4âGtCâyrâ1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1â% and fossil emissions increased to 10.0±0.5âGtCâyrâ1, reaching 10âGtCâyrâ1 for the first time in history, ELUC was 1.5±0.7âGtCâyrâ1, for total anthropogenic CO2 emissions of 11.5±0.9âGtCâyrâ1 (42.5±3.3âGtCO2). Also for 2018, GATM was 5.1±0.2âGtCâyrâ1 (2.4±0.1âppmâyrâ1), SOCEAN was 2.6±0.6âGtCâyrâ1, and SLAND was 3.5±0.7âGtCâyrâ1, with a BIM of 0.3âGtC. The global atmospheric CO2 concentration reached 407.38±0.1âppm averaged over 2018. For 2019, preliminary data for the first 6â10 months indicate a reduced growth in EFF of +0.6â% (range of â0.2â% to 1.5â%) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959â2018, but discrepancies of up to 1âGtCâyrâ1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le QuĂ©rĂ© et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)
How Many Varieties of Capitalism? Comparing the Comparative Institutional Analyses of Capitalist Diversity
This essay reviews the development of approaches within the comparative capitalisms (CC) literature and points to three theoretical innovations which, taken together, define and distinguish these approaches as a group. First, national economies are characterized by distinct institutional configurations that generate a particular systemic 'logic' of economic action. Second, the CC literature suggests a theory of comparative institutional advantage in which different institutional arrangements have distinct strengths and weaknesses for different kinds of economic activity. Third, the literature has been interpreted to imply a theory of institutional path dependence. Behind these unifying characteristics of the literature, however, lie a variety of analytical frameworks and typologies of capitalism. This paper reviews and compares these different frameworks by highlighting the fundamental distinctions among them and drawing out their respective contributions and limitations in explaining economic performance and institutional dynamics. The paper concludes that the way forward for this literature lies in developing a more dynamic view of individual institutions, the linkages between domains, and the role of politics and power.In diesem Discussion Paper werden AnsĂ€tze der Comparative-Capitalism-Diskussion vorgestellt. Sie haben drei theoretische Innovationen gemein. Erstens: Nationale Ăkonomien werden durch institutionelle Konfigurationen geprĂ€gt, die auf jeweils eigene "systemische Logiken" wirtschaftlichen Handelns hinwirken. Zweitens: Die Comparative-Capitalism-Literatur beinhaltet eine Theorie der komparativen institutionellen Vorteile, der zufolge institutionellen Konfigurationen spezifische Wettbewerbsvorteile zugeordnet werden können. Zudem, drittens, beinhaltet die Comparative-Capitalism-Literatur auch eine implizite Theorie der PfadabhĂ€ngigkeit. Trotz dieser Gemeinsamkeiten unterscheiden sich die AnsĂ€tze hinsichtlich analytischer Zugriffe und VorschlĂ€ge zur Typologisierung nationaler Kapitalismen. Beim Vergleich dieser AnsĂ€tze werden besonders deren StĂ€rken und SchwĂ€chen bei der Analyse wirtschaftlicher Performanz und institutioneller Entwicklungsdynamiken hervorgehoben. Der Aufsatz kommt zu dem Schluss, dass die Comparative-Capitalism-Literatur in dreierlei Hinsicht der Weiterentwicklung bedarf: hinsichtlich einer dynamischeren Modellierung von Institutionen, einem besseren VerstĂ€ndnis der Interaktion institutioneller DomĂ€nen und der BerĂŒcksichtigung von Macht und Politik in der Analyse von Produktionsregimen
Global Carbon Budget 2023
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate
(GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based f CO2 products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding
of the contemporary carbon cycle. All uncertainties are reported as ±1Ï. For the year 2022, EFOS increased by 0.9 % relative to 2021, with fossil emissions at 9.9 ± 0.5 Gt C yrâ1 (10.2 ± 0.5 Gt C yrâ1 when the cement carbonation sink is not included), and ELUC was 1.2 ± 0.7 Gt C yrâ1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.8 Gt C yrâ1 (40.7±3.2 Gt CO2 yrâ1). Also, for 2022, GATM was 4.6±0.2 Gt C yrâ1 (2.18±0.1 ppm yrâ1; ppm denotes parts per million), SOCEAN was 2.8 ± 0.4 Gt C yrâ1, and SLAND was 3.8 ± 0.8 Gt C yrâ1, with a BIM of â0.1 Gt C yrâ1 (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1 ± 0.1 ppm. Preliminary data for 2023 suggest an increase in EFOS relative to 2022 of +1.1 % (0.0 % to 2.1 %) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959â2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yrâ1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work
are available at https://doi.org/10.18160/GCP-2023 (Friedlingstein et al., 2023)
- âŠ