79 research outputs found

    Postharvest Biology

    Get PDF

    Regional variations in Paneth cell antimicrobial peptide expression along the mouse intestinal tract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enteric antimicrobial peptides secreted from Paneth cells, including α-defensins (in mice named cryptdins), are key effector molecules of innate immunity in the small intestine. The importance of Paneth cells α-defensins emerged from studies of enteric bacterial infection in genetically modified mice, as well as from recent studies linking reduced levels of these α-defensins to Crohn's disease localized to the ileum. However, analysis of expression of Paneth cell α-defensins is incomplete. We therefore performed a comprehensive evaluation of the distribution of antimicrobial molecules along the mouse small intestinal tract to identify potential variations in regional expression.</p> <p>Results</p> <p>In conventionally reared mice, the repertoire of Paneth cell antimicrobials differs between duodenum and ileum. In contrast to the uniform expression of most Paneth cell antimicrobials, both cryptdin 4 and cryptdin-related sequences (CRS) 4C peptides were expressed at progressively increasing amounts (10<sup>1</sup>- and 10<sup>4</sup>-fold, respectively) comparing duodenum and ileum. In tissues other than the small intestine, expression of CRS peptides was noted in thymus and caecum. Most Paneth cell products were also produced in the small intestine of germ-free mice at levels similar to those in controls, however CRS4C and RegIIIγ had reduced levels in the former (3- and 8-fold, respectively). No significant changes in expression levels of Paneth cell antimicrobial peptides was observed after oral challenge with either <it>Salmonella enterica </it>serovar typhimurium or <it>Listeria monocytogenes</it>, supporting current notions on the constitutive nature of this defensive system.</p> <p>Conclusion</p> <p>The repertoire of antimicrobial peptides changes along the small intestinal tract, and a subset of these molecules are up-regulated upon colonization, but not in response to enteric bacterial pathogens. The changes detected upon colonization suggest that Paneth cell antimicrobial peptides may play an important role in commensal microbial homeostasis, in addition to their proposed role in protection against infection. In addition, the differential expression of CRS4C along the small intestine suggests mechanisms of regulation that are distinct from other Paneth cell derived antimicrobial peptides.</p

    In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The small intestinal epithelium mediates vital functions of nutrient absorption and host defense. The spatial organization of the epithelial cells along the crypt-villus axis segregates them into regions of specialized function. However, the differences in transcriptional programming and the molecular machinery that governs the migration, adhesion, and differentiation of intestinal epithelial cell lineages in humans remain under-explored. To increase our understanding of these mechanisms, we have evaluated gene expression patterns of ileal epithelial cells isolated by laser capture microdissection from either the villus epithelial or crypt cell regions of healthy human small intestinal mucosa. Expression profiles in villus and crypt epithelium were determined by DNA microarray, quantitative real-time PCR, and immunohistochemistry based methods. The expression levels of selected epithelial biomarkers were also compared between gastrointestinal tissues.</p> <p>Results</p> <p>Previously established biomarkers as well as a novel and distinct set of genes believed to be linked to epithelial cell motility, adhesion, and differentiation were found to be enriched in each of the two corresponding cell populations (GEO accession: GSE10629). Additionally, high baseline expression levels of innate antimicrobials, alpha defensin 5 (HD5) and regenerating islet-derived 3 alpha (Reg3A), were detected exclusively within the small bowel crypt, most notably in the ileum in comparison to other sites along the gastrointestinal tract.</p> <p>Conclusion</p> <p>The elucidation of differential gene expression patterns between crypt and villus epithelial cell lineages in human ileal tissue provides novel insights into the molecular machinery that mediates their functions and spatial organization. Moreover, our findings establish an important framework of knowledge for future investigations of human gastrointestinal diseases.</p

    Backpack-mounted satellite transmitters do not affect reproductive performance in a migratory bustard

    Get PDF
    Backpack-mounted satellite transmitters (PTTs) are used extensively in the study of avian habitat use and of the movements and demography of medium- to large-bodied species, but can affect individuals’ performance and fitness. Transparent assessment of potential transmitter effects is important for both ethical accountability and confidence in, or adjustment to, life history parameter estimates. We assessed the influence of transmitters on seven reproductive parameters in Asian houbara Chlamydotis macqueenii, comparing 114 nests of 38 females carrying PTTs to 184 nests of untagged birds (non-PTT) over seven breeding seasons (2012‒2018) in Uzbekistan. There was no evidence of any influence of PTTs on: lay date (non-PTT x̅ = 91.7 Julian day ± 12.3 SD; PTT x̅ = 95.1 Julian day ± 15.7 SD); clutch size (non-PTT x̅ = 3.30 ± 0.68 SD; PTT x̅ = 3.25 ± 0.65 SD); mean egg weight at laying (non-PTT x̅ = 66.1g ± 5.4 SD; PTT x̅ = 66.4g ± 5.4 SD); nest success (non-PTT x̅ = 57.08% ± 4.3 SE; PTT x̅ = 58.24% ± 4.5 SE for nests started 2 April); egg hatchability (non-PTT x̅ = 88.3% ± 2.2 SE; PTT x̅ = 88.3% ± 2.6 SE); or chick survival to fledging from broods that had at least one surviving chick (non-PTT x̅ = 63.4% ± 4.2 SE; PTT x̅= 64.4% ± 4.7 SE). High nesting propensity (97.3% year-1 ± 1.9% SE) of tagged birds indicated minimal PTT effect on breeding probability. These findings show harness-mounted transmitters can give unbiased measures of demographic parameters of this species, and are relevant to other large-bodied, cursorial, ground-nesting birds of open habitats, particularly other bustards

    Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere

    Get PDF
    For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species–season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales

    Get PDF
    Timing of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of timing of movement activity among species using six temporal variables: start of activity relative to sunrise, end of activity relative to sunset, relative speed at midday, number of movement bouts, bout duration and proportion of active daytime hours. We test for the influence of flight mode and foraging habitat on the timing of movement activity across avian guilds. We used 64 570 days of GPS movement data collected between 2002 and 2019 for local (non‐migratory) movements of 991 birds from 49 species, representing 14 orders. Dissimilarity among daily activity patterns was best explained by flight mode. Terrestrial soaring birds began activity later and stopped activity earlier than pelagic soaring or flapping birds. Broad‐scale foraging habitat explained less of the clustering patterns because of divergent timing of active periods of pelagic surface and diving foragers. Among pelagic birds, surface foragers were active throughout all 24 hrs of the day while diving foragers matched their active hours more closely to daylight hours. Pelagic surface foragers also had the greatest daily foraging distances, which was consistent with their daytime activity patterns. This study demonstrates that flight mode and foraging habitat influence temporal patterns of daily movement activity of birds.We thank the Nature Conservancy, the Bailey Wildlife Foundation, the Bluestone Foundation, the Ocean View Foundation, Biodiversity Research Institute, the Maine Outdoor Heritage Fund, the Davis Conservation Foundation and The U.S. Department of Energy (DE‐EE0005362), and the Darwin Initiative (19-026), EDP S.A. ‘Fundação para a Biodiversidade’ and the Portuguese Foundation for Science and Technology (FCT) (DL57/2019/CP 1440/CT 0021), Enterprise St Helena (ESH), Friends of National Zoo Conservation Research Grant Program and Conservation Nation, ConocoPhillips Global Signature Program, Maryland Department of Natural Resources, Cellular Tracking Technologies and Hawk Mountain Sanctuary for providing funding and in-kind support for the GPS data used in our analyses

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission
    • 

    corecore