114 research outputs found

    Subtle local structural variations in oxygen deficient niobium germanate thin film glasses as revealed by x-ray absorption spectroscopy

    Get PDF
    6 págs.; 4 figs.; 2 tabs. 16th International Conference on X-ray Absorption Fine Structure (XAFS16) ; Open Access funded by Creative Commons Atribution Licence 3.0The local electronic and crystal structure of niobium-lead-germanate, Nb2O5-PbO- GeO2 (NPG), glass thin films on silicon substrates were probed by XANES and EXAFS. NPG glasses are promising candidates for applications in nonlinear optical devices because they exhibit interesting optical characteristics such as high nonlinear third order optical susceptibility. In this work NPG glasses were prepared with pulsed laser deposition method with varying oxygen partial pressure to induce thin films with different oxygen stoichiometry. Previously, it was shown that oxygen stoichiometry has a very important effect to produce unusual high optical susceptibility. Detailed EXAFS and XANES analyses in a series of NPG thin films revealed the subtle variations in the local environment around Nb atoms and the Nb oxidation states caused by oxygen deficiencies. Published under licence by IOP Publishing LtdPeer Reviewe

    Executive functions in children with specific learning disorders: Shedding light on a complex profile through teleassessment

    Get PDF
    Executive Functions (EFs) are high-order cognitive processes relevant to learning and adaptation and frequently impaired in children with specific learning disorders (SLDs). This study aimed to investigate EFs in children with SLD and explore the role of specific EF-related subprocesses, such as stimuli processing and processing speed. Fifty-seven SLD and 114 typically developing (TD) children, matched for gender and age, completed four tasks measuring response inhibition, interference control, shifting, and updating on a web-based teleassessment platform. The results show that SLD children performed lower in all EF tasks than TD children, regardless of stimulus type and condition. Mediation analyses suggested that differences between the SLD and TD groups are mediated by EF-related subprocesses, offering an interpretative model of EF deficits in children with SLD

    2'-O-methoxyethyl splice-switching oligos correct splicing from IVS2-745 β-thalassemia patient cells restoring HbA production and chain rebalance

    Get PDF
    \u3b2-thalassemia is a disorder caused by altered hemoglobin protein synthesis and affects individuals worldwide. Severe forms of the disease, left untreated, can result in death before the age of 3 years (1). The standard of care consists of chronic and costly palliative treatment by blood transfusion combined with iron chelation. This dual approach suppresses anemia and reduces iron-related toxicities in patients. Allogeneic bone marrow transplant is an option, but limited by the availability of a highly compatible HSC donor. While gene therapy is been explored in several trials, its use is highly limited to developed regions with centers of excellence and well-established healthcare systems (2). Hence, there remains a tremendous unmet medical need to develop alternative treatment strategies for \u3b2-thalassemia (3). Occurrence of aberrant splicing is one of the processes that affects \u3b2-globin synthesis in \u3b2-thalassemia. The (C>G) IVS-2-745 is a splicing mutation within intron 2 of the \u3b2-globin gene. It leads to an aberrantly spliced mRNA that incorporates an intron fragment. This results in an in-frame premature termination codon that inhibits \u3b2-globin production. Here, we propose the use of uniform 2'-O-methoxyethyl (2'-MOE) splice switching oligos (SSOs) to reverse this aberrant splicing in the pre-mRNA. With these lead SSOs we show aberrant to wild type splice switching. This switching leads to an increase of adult hemoglobin (HbA) up to 80% in erythroid cells from patients with the IVS-2-745 mutation. Furthermore, we demonstrate a restoration of the balance between \u3b2-like- and \u3b1-globin chains, and up to an 87% reduction in toxic \u3b1-heme aggregates. While examining the potential benefit of 2'-MOE-SSOs in a mixed sickle-thalassemic phenotypic setting, we found reduced HbS synthesis and sickle cell formation due to HbA induction. In summary, 2'-MOE-SSOs are a promising therapy for forms of \u3b2-thalassemia caused by mutations leading to aberrant splicing

    The EHA research roadmap: anemias

    Get PDF
    In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by one to two section editors who were leading international experts in the field. In the five years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The eleven EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cellbased Immune Therapies; and Gene Therap

    The European Hematology Association Roadmap for European Hematology Research: a consensus document

    Get PDF
    The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients

    The European Hematology Association Roadmap for European Hematology Research. A Consensus Document

    Get PDF
    Abstract The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at Euro 23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine sections in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients. Received December 15, 2015. Accepted January 27, 2016. Copyright © 2016, Ferrata Storti Foundatio

    Recommendations regarding splenectomy in hereditary hemolytic anemias.

    Get PDF
    Hereditary hemolytic anemias are a group of disorders with a variety of causes, including red cell membrane defects, red blood cell enzyme disorders, congenital dyserythropoietic anemias, thalassemia syndromes and hemoglobinopathies. As damaged red blood cells passing through the red pulp of the spleen are removed by splenic macrophages, splenectomy is one possible therapeutic approach to the management of severely affected patients. However, except for hereditary spherocytosis for which the effectiveness of splenectomy has been well documented, the efficacy of splenectomy in other anemias within this group has yet to be determined and there are concerns regarding short- and long-term infectious and thrombotic complications. In light of the priorities identified by the European Hematology Association Roadmap we generated specific recommendations for each disorder, except thalassemia syndromes for which there are other, recent guidelines. Our recommendations are intended to enable clinicians to achieve better informed decisions on disease management by splenectomy, on the type of splenectomy and the possible consequences. As no randomized clinical trials, case control or cohort studies regarding splenectomy in these disorders were found in the literature, recommendations for each disease were based on expert opinion and were subsequently critically revised and modified by the Splenectomy in Rare Anemias Study Group, which includes hematologists caring for both adults and children
    corecore