25 research outputs found

    Toimintamalleja sosiaali- ja terveysalan tutkimuksen, kehittämisen ja innovaatiotoiminnan edistämiseen

    Get PDF
    Tämä selvitys keskittyy tutkimus-, kehittämis- ja innovaatiotoiminnan (TKI-toiminnan) näkökulmaan osana SOTE-järjestelmän rakenteellista kehittämistä. TKI-toiminnan rooli on erityisesti pidemmällä aikavälillä uusien, entistä vaikuttavampien teknologioiden, ratkaisujen ja hoitokäytäntöjen kehittämisessä sekä kustannusten kasvun hillinnässä. Raportissa huomion kohteena ovat erityisesti SOTE-alan TKI-toiminnan rakenteen kuvaaminen sekä hallintomallista riippumattomat hyvät käytännöt ja toimintamallit SOTE-alan TKI-toiminnan organisoinnissa. Selvityksen keskeinen johtopäätös on tunnistettu tarve alueiden strategiselle suunnittelulle ja koordinoinnille; TKI-toiminnan kokonaiskuvan kirkastamiseen on panostettava sekä alueilla että kansallisesti poikkihallinnollisessa yhteistyössä. Tulevaisuudessa, kun alueiden suunnittelu- ja järjestämisvapaus kasvaa, on tärkeää, että kansallisten toimijoiden ja alueiden välisessä vuoropuhelussa muodostetaan yhteisymmärrys SOTE:n päämäärätavoitteista. Nämä tavoitteet tulee purkaa mitattaviksi ja muodostaa niiden ympärille laatu- ja tiedolla johtamisen järjestelmä. Tämän ohella tarvitaan kannusteita, ohjausta ja rajapintojen standardointia yhdessä toimimisen mahdollistamiseksi. Mikäli SOTE-alan järjestämis- ja tuotantovastuut hajautuvat jatkossakin myös SOTE:n päämäärien toteutumista tukevaa poikkihallinnollista yhteistyötä ja kansallista resurssiohjausta on syytä vahvistaa

    Common Inflammation-Related Candidate Gene Variants and Acute Kidney Injury in 2647 Critically Ill Finnish Patients

    Get PDF
    Acute kidney injury (AKI) is a syndrome with high incidence among the critically ill. Because the clinical variables and currently used biomarkers have failed to predict the individual susceptibility to AKI, candidate gene variants for the trait have been studied. Studies about genetic predisposition to AKI have been mainly underpowered and of moderate quality. We report the association study of 27 genetic variants in a cohort of Finnish critically ill patients, focusing on the replication of associations detected with variants in genes related to inflammation, cell survival, or circulation. In this prospective, observational Finnish Acute Kidney Injury (FINNAKI) study, 2647 patients without chronic kidney disease were genotyped. We defined AKI according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria. We compared severe AKI (Stages 2 and 3, n = 625) to controls (Stage 0, n = 1582). For genotyping we used iPLEX(TM) Assay (Agena Bioscience). We performed the association analyses with PLINK software, using an additive genetic model in logistic regression. Despite the numerous, although contradictory, studies about association between polymorphisms rs1800629 in TNFA and rs1800896 in IL10 and AKI, we found no association (odds ratios 1.06 (95% CI 0.89-1.28, p = 0.51) and 0.92 (95% CI 0.80-1.05, p = 0.20), respectively). Adjusting for confounders did not change the results. To conclude, we could not confirm the associations reported in previous studies in a cohort of critically ill patients.Peer reviewe

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Heme oxygenase-1 repeat polymorphism in septic acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine-thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S-L (short to long) classification, and 27 and 34 repeats for the S-M-L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01-1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk

    The Center of Excellence in Atmospheric Science (2002–2019) — from molecular and biological processes to the global climate

    Get PDF
    The study of atmospheric processes related to climate requires a multidisciplinary approach, encompassing physics, chemistry, meteorology, forest science, and environmental science. The Academy of Finland Centre of Excellence in atmospheric sciences (CoE ATM) responded to that need for 18 years and produced extensive research and eloquent results, which are summarized in this review. The work in the CoE ATM enhanced our understanding in biogeochemical cycles, ecosystem processes, dynamics of aerosols, ions and neutral clusters in the lower atmosphere, and cloud formation and their interactions and feedbacks. The CoE ATM combined continuous and comprehensive long-term in-situ observations in various environments, ecosystems and platforms, ground- and satellitebased remote sensing, targeted laboratory and field experiments, and advanced multi-scale modeling. This has enabled improved conceptual understanding and quantifications across relevant spatial and temporal scales. Overall, the CoE ATM served as a platform for the multidisciplinary research community to explore the interactions between the biosphere and atmosphere under a common and adaptive framework

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore