62 research outputs found

    Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using∌200 multiple images

    Get PDF
    We present a high-precision mass model of the galaxy cluster MACSJ0416.1-2403, based on a strong-gravitational-lensing analysis of the recently acquired Hubble Space Telescope Frontier Fields (HFF) imaging data. Taking advantage of the unprecedented depth provided by HST/Advanced Camera for Survey observations in three passbands, we identify 51 new multiply imaged galaxies, quadrupling the previous census and bringing the grand total to 68, comprising 194 individual lensed images. Having selected a subset of the 57 most securely identified multiply imaged galaxies, we use the lenstool software package to constrain a lens model comprised of two cluster-scale dark-matter haloes and 98 galaxy-scale haloes. Our best-fitting model predicts image positions with an rms error of 0.68arcsec, which constitutes an improvement of almost a factor of 2 over previous, pre-HFF models of this cluster. We find the total projected mass inside a 200kpc aperture to be (1.60±0.01)×1014 M⊙, a measurement that offers a three-fold improvement in precision, reaching the per cent level for the first time in any cluster. Finally, we quantify the increase in precision of the derived gravitational magnification of high-redshift galaxies and find an improvement by a factor of∌2.5 in the statistical uncertainty. Our findings impressively confirm that HFF imaging has indeed opened the domain of high-precision mass measurements for massive clusters of galaxie

    Hubble Frontier Fields : the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1−2403

    Get PDF
    We use a joint optical/X-ray analysis to constrain the geometry and history of the ongoing merging event in the massive galaxy cluster MACSJ0416.1-2403 (z=0.397). Our investigation of cluster substructure rests primarily on a combined strong- and weak-lensing mass reconstruction based on the deep, high-resolution images obtained for the Hubble Frontier Fields initiative. To reveal the system's dynamics, we complement this lensing analysis with a study of the intra-cluster gas using shallow Chandra data, and a three-dimensional model of the distribution and motions of cluster galaxies derived from over 100 spectroscopic redshifts. The multi-scale grid model obtained from our combined lensing analysis extends the high-precision strong-lensing mass reconstruction recently performed to cluster-centric distances of almost 1 Mpc. Our analysis detects the two well known mass concentrations in the cluster core. A pronounced offset between collisional and collisionless matter is only observed for the SW cluster component, while excellent alignment is found for the NE cluster. Both the lensing analysis and the distribution of cluster light strongly suggest the presence of a third massive structure, almost 2 arcmin SW of the cluster centre. Since no X-ray emission is detected in this region, we conclude that this structure is non-virialised and speculate that it might be part of a large-scale filament almost aligned with our line of sight. Combining all evidence from the distribution of dark and luminous matter, we propose two alternative scenarios for the trajectories of the components of MACSJ0416.1-2403. Upcoming deep X-ray observations that allow the detection of shock fronts, cold cores, and sloshing gas (all key diagnostics for studies of cluster collisions) will allow us to test, and distinguish between these two scenarios

    The Extraordinary Amount of Substructure in the Hubble Frontier Fields Cluster Abell 2744

    Get PDF
    We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z=0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e., at R < 1 Mpc from the brightest cluster galaxy, reveals eight substructures, including the main core. All of these dark-matter halos are detected with a significance of at least 5σ and feature masses ranging from 0.5 to 1.4× 1014M⊙ within R < 150 kpc. Merten et al. (2011) and Medezinski et al. (2016) substructures are also detected by us. We measure a slightly higher mass for the main core component than reported previously and attribute the discrepancy to the inclusion of our tightly constrained strong-lensing mass model built on Hubble Frontier Fields data. X-ray data obtained by XMM-Newton reveal four remnant cores, one of them a new detection, and three shocks. Unlike Merten et al. (2011), we find all cores to have both dark and luminous counterparts. A comparison with clusters of similar mass in the MXXL simulations yields no objects with as many massive substructures as observed in Abell 2744, confirming that Abell 2744 is an extreme system. We stress that these properties still do not constitute a challenge to ΛCDM, as caveats apply to both the simulation and the observations: for instance, the projected mass measurements from gravitational lensing and the limited resolution of the sub-haloes finders. We discuss implications of Abell 2744 for the plausibility of different dark-matter candidates and, finally, measure a new upper limit on the self-interaction cross-section of dark matter of σDM < 1.28 cm2g−1(68% CL), in good agreement with previous results from Harvey et al. (2015)

    CyanoFactory, a European consortium to develop technologies needed to advance cyanobacteria as chassis for production of chemicals and fuels

    Get PDF
    CyanoFactory, Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories, was an R&D project developed in response to the European Commission FP7-ENERGY-2012-1 call “Future Emerging Technologies” and the need for significant advances in both new science and technologies to convert solar energy into a fuel. CyanoFactory was an example of “purpose driven” research and development with identified scientific goals and creation of new technologies. The present overview highlights significant outcomes of the project, three years after its successful completion. The scientific progress of CyanoFactory involved: (i) development of a ToolBox for cyanobacterial synthetic biology; (ii) construction of DataWarehouse/Bioinformatics web-based capacities and functions; (iii) improvement of chassis growth, functionality and robustness; (iv) introduction of custom designed genetic constructs into cyanobacteria, (v) improvement of photosynthetic efficiency towards hydrogen production; (vi) biosafety mechanisms; (vii) analyses of the designed cyanobacterial cells to identify bottlenecks with suggestions on further improvements; (viii) metabolic modelling of engineered cells; (ix) development of an efficient laboratory scale photobioreactor unit; and (x) the assembly and experimental performance assessment of a larger (1350 L) outdoor flat panel photobioreactor system during two seasons. CyanoFactory - Custom design and purpose construction of microbial cells for the production of desired products using synthetic biology – aimed to go beyond conventional paths to pursue innovative and high impact goals. CyanoFactory brought together ten leading European partners (universities, research organizations and enterprises) with a common goal – to develop the future technologies in Synthetic biology and Advanced photobioreactors

    Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales

    Get PDF
    Obtaining strongly supported phylogenies that permit confident taxonomic and evolutionary interpretations has been a challenge in algal biology. High-throughput sequencing has improved the capacity to generate data and yields more informative datasets. We sequenced and analysed the chloroplast genomes of 22 species of the order Nemaliales as a case study in the use of phylogenomics as an approach to achieve well-supported phylogenies of red algae.Australian Research Council/[FT110100585]/ARC/AustraliaAustralian Biological Resources Study/[RFL213-08]/ABRS/AustraliaMillennium Scientific Initiative/[NC120030]/MSI/Nueva JerseyUniversity of Melbourne///AustraliaUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en Ciencias del Mar y LimnologĂ­a (CIMAR
    • 

    corecore