23 research outputs found

    Fast Response of Boundary Layer Clouds to Climate Change

    Get PDF
    Boundary layer clouds make up a large part of the total cloud cover across the world. These clouds play an important role in the vertical transport of heat, moisture, and momentum from the surface through the boundary layer. Thus these clouds have a significant impact on the vertical structure of the boundary layer. They not only have an impact on the vertical structure, but also have a significant impact on the Earth's radiation budget. Normally boundary layer clouds generally have a higher albedo compared to the surface below them and as a result there is an increased reflectance of solar radiation. Due to these strong impacts on the atmospheric conditions it is important that these boundary layer clouds and their processes are taken into account when simulating (future) climates. One of the largest uncertainties in climate projections is related to the uncertainty in how boundary layer clouds respond to climate change. This uncertainty in cloud feedback is primarily related to the use of general circulation models (GCMs) in climate projections. As GCMs have a very coarse resolution they require parameterizations to represent boundary layer processes and clouds. These parameterizations are imperfect and therefore the GCMs have difficulties in representing the radiative effects of clouds. Therefore high resolution models such as large-eddy simulations (LESs), which require less parameterizations are used to study boundary layer processes and clouds. Several LES studies have been conducted on climate projections, where a perturbation of a future climate is applied to the model. These perturbations include increases in sea surface temperature and/or the concentration of CO2. In future climates it is anticipated that the atmosphere will become warmer and therefore it can contain a much larger concentration of moisture. This increased moisture can lead to the presence of very humid layers above the boundary layer, known as elevated moisture layers, which have already been observed in nature. This thesis investigates the response of boundary layer clouds to the presence of an elevated moisture layer, based on observed conditions during research flight 4 of the first Next Generation-aircraft Remote-sensing (NARVAL) campaign. This study is divided into three main sections. The first and second parts of the analysis focus on comparing the LES to observations recorded during the campaign in order to test the representativeness of the model. Following this the response of boundary layer clouds to an elevated moisture layer perturbation is investigated. To this purpose, LESs are initially generated at the locations of the 11 dropsondes launched during the fourth research flight of the NARVAL campaign, which took place on December 14th 2013. Initial comparisons indicate the LES shows good ability in representing the atmospheric conditions observed, showing a strong evolution of the boundary layer over time which has previously been observed at the Barbados Cloud Observatory. The results from the simulations also indicate that the LES has an ability to capture the height of the boundary layer inversion. There are some limitations in capturing the strength of the inversion, which is potentially related to the extremely dry conditions observed above the boundary layer. The LES is then compared to retrievals from the High Altitude and Long Range Aircraft (HALO) Microwave Package (HAMP) instrument. In order to take the flight path into account the mean large-scale profiles, from the locations of 9 dropsondes, are used to derive a composite case. The aim of using the composite case was to investigate whether the LES has the ability to capture the large variability in the integrated water vapor and liquid water path retrieved throughout the flight path. Using a large domain LES, with horizontal extent reaching 51.2 km2 the variability in integrated water vapor and liquid water path does approach the retrieved values, while domains with a smaller domains have a larger underestimation of the variability. The simulations indicate a correlation between the degree of organization, Iorg and the precipitation flux, variability in integrated water vapor, and variability in liquid water path. A similar slope of dependency between the variability in integrated water vapor and Iorg is found, across all simulations. In comparison the slopes of dependency between the Iorg and both the variability in liquid water path and precipitation flux values differ between each of the simulations. This suggests that there are different structures in the clouds between simulations and that the Iorg is highly controlled by the water vapor distribution. These studies give confidence that the LES has the ability to capture observed conditions, which is important for simulating future climates. For the investigation into the impact of an elevated moisture layer and the corresponding response of the boundary layer clouds, two sets of simulations were generated on a 25.6 km2 domain using the composite case setup from the HAMP comparison. These two sets of simulations include a control simulation and a set of 5 elevated moisture layer simulations with varying elevated moisture layer depth. While the elevated moisture layer has a significant impact on the atmospheric conditions in the free troposphere, while the largest impact in the boundary layer occurs in the cloud fraction. A decrease in the cloud layer depth is found with increasing elevated moisture layer depth. The impact is not however limited to the vertical structure of the clouds with a significant impact also found in the radiative fluxes throughout the lower troposphere. In order to determine the response of the boundary layer clouds to a change in climate, represented here by the elevated moisture layer, the cloud radiative effect is calculated at the top of the cloud layer. The results indicate there is a positive feedback from the boundary layer clouds produced in response to the elevated moisture layer, which indicates that these clouds have a warming effect on the boundary layer

    Early Signs Monitoring to Prevent Relapse in Psychosis and Promote Well-Being, Engagement, and Recovery:Protocol for a Feasibility Cluster Randomized Controlled Trial Harnessing Mobile Phone Technology Blended With Peer Support

    Get PDF
    BACKGROUND: Relapse in schizophrenia is a major cause of distress and disability and is predicted by changes in symptoms such as anxiety, depression, and suspiciousness (early warning signs [EWSs]). These can be used as the basis for timely interventions to prevent relapse. However, there is considerable uncertainty regarding the implementation of EWS interventions. OBJECTIVE: This study was designed to establish the feasibility of conducting a definitive cluster randomized controlled trial comparing Early signs Monitoring to Prevent relapse in psychosis and prOmote Well-being, Engagement, and Recovery (EMPOWER) against treatment as usual (TAU). Our primary outcomes are establishing parameters of feasibility, acceptability, usability, safety, and outcome signals of a digital health intervention as an adjunct to usual care that is deliverable in the UK National Health Service and Australian community mental health service (CMHS) settings. We will assess the feasibility of candidate primary outcomes, candidate secondary outcomes, and candidate mechanisms for a definitive trial. METHODS: We will randomize CMHSs to EMPOWER or TAU. We aim to recruit up to 120 service user participants from 8 CMHSs and follow them for 12 months. Eligible service users will (1) be aged 16 years and above, (2) be in contact with local CMHSs, (3) have either been admitted to a psychiatric inpatient service or received crisis intervention at least once in the previous 2 years for a relapse, and (4) have an International Classification of Diseases-10 diagnosis of a schizophrenia-related disorder. Service users will also be invited to nominate a carer to participate. We will identify the feasibility of the main trial in terms of recruitment and retention to the study and the acceptability, usability, safety, and outcome signals of the EMPOWER intervention. EMPOWER is a mobile phone app that enables the monitoring of well-being and possible EWSs of relapse on a daily basis. An algorithm calculates changes in well-being based on participants' own baseline to enable tailoring of well-being messaging and clinical triage of possible EWSs. Use of the app is blended with ongoing peer support. RESULTS: Recruitment to the trial began September 2018, and follow-up of participants was completed in July 2019. Data collection is continuing. The database was locked in July 2019, followed by analysis and disclosing of group allocation. CONCLUSIONS: The knowledge gained from the study will inform the design of a definitive trial including finalizing the delivery of our digital health intervention, sample size estimation, methods to ensure successful identification, consent, randomization, and follow-up of participants, and the primary and secondary outcomes. The trial will also inform the final health economic model to be applied in the main trial. TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number (ISRCTN): 99559262; http://isrctn.com/ISRCTN99559262. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/15058

    Health, education, and social care provision after diagnosis of childhood visual disability

    Get PDF
    Aim: To investigate the health, education, and social care provision for children newly diagnosed with visual disability.Method: This was a national prospective study, the British Childhood Visual Impairment and Blindness Study 2 (BCVIS2), ascertaining new diagnoses of visual impairment or severe visual impairment and blindness (SVIBL), or equivalent vi-sion. Data collection was performed by managing clinicians up to 1-year follow-up, and included health and developmental needs, and health, education, and social care provision.Results: BCVIS2 identified 784 children newly diagnosed with visual impairment/SVIBL (313 with visual impairment, 471 with SVIBL). Most children had associated systemic disorders (559 [71%], 167 [54%] with visual impairment, and 392 [84%] with SVIBL). Care from multidisciplinary teams was provided for 549 children (70%). Two-thirds (515) had not received an Education, Health, and Care Plan (EHCP). Fewer children with visual impairment had seen a specialist teacher (SVIBL 35%, visual impairment 28%, χ2p < 0.001), or had an EHCP (11% vs 7%, χ2p < 0 . 01).Interpretation: Families need additional support from managing clinicians to access recommended complex interventions such as the use of multidisciplinary teams and educational support. This need is pressing, as the population of children with visual impairment/SVIBL is expected to grow in size and complexity.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore