101 research outputs found
Debris disc candidates in systems with transiting planets
Debris discs are known to exist around many planet-host stars, but no debris
dust has been found so far in systems with transiting planets. Using publicly
available catalogues, we searched for infrared excesses in such systems. In the
recently published Wide-Field Infrared Survey Explorer (WISE) catalogue, we
found 52 stars with transiting planets. Two systems with one transiting "hot
Jupiter" each, TrES-2 and XO-5, exhibit small excesses both at 12 and 22
microns at a > 3 sigma level. Provided that one or both of these detections are
real, the frequency of warm excesses in systems with transiting planets of 2-4
% is comparable to that around solar-type stars probed at similar wavelengths
with Spitzer's MIPS and IRS instruments. Modelling suggests that the observed
excesses would stem from dust rings with radii of several AU. The inferred
amount of dust is close to the maximum expected theoretically from a
collisional cascade in asteroid belt analogues. If confirmed, the presence of
debris discs in systems with transiting planets may put important constraints
onto formation and migration scenarios of hot Jupiters.Comment: Accepted for publication in MNRAS Letter
Thermodynamics and Topology of Disordered Systems: Statistics of the Random Knot Diagrams on Finite Lattice
The statistical properties of random lattice knots, the topology of which is
determined by the algebraic topological Jones-Kauffman invariants was studied
by analytical and numerical methods. The Kauffman polynomial invariant of a
random knot diagram was represented by a partition function of the Potts model
with a random configuration of ferro- and antiferromagnetic bonds, which
allowed the probability distribution of the random dense knots on a flat square
lattice over topological classes to be studied. A topological class is
characterized by the highest power of the Kauffman polynomial invariant and
interpreted as the free energy of a q-component Potts spin system for
q->infinity. It is shown that the highest power of the Kauffman invariant is
correlated with the minimum energy of the corresponding Potts spin system. The
probability of the lattice knot distribution over topological classes was
studied by the method of transfer matrices, depending on the type of local
junctions and the size of the flat knot diagram. The obtained results are
compared to the probability distribution of the minimum energy of a Potts
system with random ferro- and antiferromagnetic bonds.Comment: 37 pages, latex-revtex (new version: misprints removed, references
added
On insertion-deletion systems over relational words
We introduce a new notion of a relational word as a finite totally ordered
set of positions endowed with three binary relations that describe which
positions are labeled by equal data, by unequal data and those having an
undefined relation between their labels. We define the operations of insertion
and deletion on relational words generalizing corresponding operations on
strings. We prove that the transitive and reflexive closure of these operations
has a decidable membership problem for the case of short insertion-deletion
rules (of size two/three and three/two). At the same time, we show that in the
general case such systems can produce a coding of any recursively enumerable
language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure
The cold origin of the warm dust around epsilon Eridani
Context: The K2V star eps Eri hosts one known inner planet, an outer Kuiper
belt analog, and an inner disk of warm dust. Spitzer/IRS measurements indicate
that the warm dust is present at distances as close as a few AU from the star.
Its origin is puzzling, since an "asteroid belt" that could produce this dust
would be unstable because of the known inner planet. Aims: Here we test the
hypothesis that the observed warm dust is generated by collisions in the outer
belt and is transported inward by Poynting-Robertson (P-R) drag and strong
stellar winds. Methods: We simulated a steady-state distribution of dust
particles outside 10AU with a collisional code and in the inner region (r<10AU)
with single-particle numerical integrations. By assuming homogeneous spherical
dust grains composed of water ice and silicate, we calculated the thermal
emission of the dust and compared it with observations. We investigated two
different orbital configurations for the inner planet inferred from RV
measurements, one with a highly eccentric orbit of e=0.7 and another one with a
moderate one of e=0.25. We also produced a simulation without a planet.
Results: Our models can reproduce the shape and magnitude of the observed SED
from mid-IR to sub-mm wavelengths, as well as the Spitzer/MIPS radial
brightness profiles. The best-fit dust composition includes both ice and
silicates. The results are similar for the two possible planetary orbits and
without a planet. Conclusions: The observed warm dust in the system can indeed
stem from the outer belt and be transported inward by P-R and stellar wind
drag. The inner planet has little effect on the distribution of dust, so that
the planetary orbit could not be constrained. Reasonable agreement between the
model and observations can only be achieved by relaxing the assumption of
purely silicate dust and assuming a mixture of silicate and ice in comparable
amounts.Comment: 9 pages, 9 figures, abstract abridge
Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant
We consider quantum holonomy of some three-dimensional general covariant
non-Abelian field theory in Landau gauge and confirm a previous result
partially proven. We show that quantum holonomy retains metric independence
after explicit gauge fixing and hence possesses the topological property of a
link invariant. We examine the generalized quantum holonomy defined on a
multi-component link and discuss its relation to a polynomial for the link.Comment: RevTex, 12 pages. The metric independence of path integral measure is
justified and the case of multi-component link is discussed in detail. To be
published in Physical Review
Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology
This paper is an extended account of my "Introductory Plenary talk at Knots
in Hellas 2016" conference We start from the short introduction to Knot Theory
from the historical perspective, starting from Heraclas text (the first century
AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of
Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We
spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram
colorings (1956). In the second section we describe how Fox work was
generalized to distributive colorings (racks and quandles) and eventually in
the work of Jones and Turaev to link invariants via Yang-Baxter operators, here
the importance of statistical mechanics to topology will be mentioned. Finally
we describe recent developments which started with Mikhail Khovanov work on
categorification of the Jones polynomial. By analogy to Khovanov homology we
build homology of distributive structures (including homology of Fox colorings)
and generalize it to homology of Yang-Baxter operators. We speculate, with
supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter
homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of
pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants
of links) will be discussed and expanded.
Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer,
part of the series Proceedings in Mathematics & Statistics (PROMS
A possible architecture of the planetary system HR 8799
HR8799 is a nearby A-type star with a debris disk and three planetary
candidates recently imaged directly. We undertake a coherent analysis of
various portions of observational data on all known components of the system.
The goal is to elucidate the architecture and evolutionary status of the
system. We try to further constrain the age and orientation of the system,
orbits and masses of the companions, as well as the location of dust. From the
high luminosity of debris dust and dynamical constraints, we argue for a rather
young system's age of <50Myr. The system must be seen nearly, but not exactly,
pole-on. Our analysis of the stellar rotational velocity yields an inclination
of 13-30deg, whereas i>20deg is needed for the system to be dynamically stable,
which suggests a probable inclination range of 20-30deg. The spectral energy
distribution is naturally reproduced with two dust rings associated with two
planetesimal belts. The inner "asteroid belt" is located at ~10AU inside the
orbit of the innermost companion and a "Kuiper belt" at >100AU is just exterior
to the orbit of the outermost companion. The dust masses in the inner and outer
ring are estimated to be ~1E-05 and 4E-02 M_earth, respectively. We show that
all three planetary candidates may be stable in the mass range suggested in the
discovery paper by Marois et al. 2008 (between 5 and 13 Jupiter masses), but
only for some of all possible orientations. Stable orbits imply a double
(4:2:1) mean-motion resonance between all three companions. We finally show
that in the cases where the companions themselves are orbitally stable, the
dust-producing planetesimal belts are also stable against planetary
perturbations.Comment: 12 pages, 14 figures, 4 tables, accepted to be published in Astronomy
& Astrophysics (May 20, 2009
Orbital characterization of the \beta Pictoris b giant planet
In June 2010, we confirmed the existence of a giant planet in the disk of the
young star Beta Pictoris, located between 8 AU and 15 AU from the star. This
young planet offers the rare opportunity to monitor a large fraction of the
orbit using the imaging technique over a reasonably short timescale. Using the
NAOS-CONICA adaptive-optics instrument (NACO) at the Very Large Telescope
(VLT), we obtained repeated follow-up images of the Bpic system in the Ks and
L' filters at four new epochs in 2010 and 2011. Complementing these data with
previous measurements, we conduct a homogeneous analysis, which covers more
than eight yrs, to accurately monitor the Bpic b position relative to the star.
On the basis of the evolution of the planet's relative position with time, we
derive the best-fit orbital solutions for our measurements. More reliable
results are found with a Markov-chain Monte Carlo approach. The solutions favor
a low-eccentricity orbit e < 0.17, with semi-major axis in the range 8--9 AU
corresponding to orbital periods of 17--21 yrs. Our solutions favor a highly
inclined solution with a peak around i=88.5+-1.7 deg, and a longitude of
ascending node tightly constrained at Omega = -147.5+-1.5 deg. These results
indicate that the orbital plane of the planet is likely to be above the
midplane of the main disk, and compatible with the warp component of the disk
being tilted between 3.5 deg and 4.0 deg. This suggests that the planet plays a
key role in the origin of the inner warped-disk morphology of the Bpic disk.
Finally, these orbital parameters are consistent with the hypothesis that the
planet is responsible for the transit-like event observed in November 1981, and
also linked to the cometary activity observed in the Bpic system.Comment: 10 pages, 12 figures, accepted to A&
A peculiar class of debris disks from Herschel/DUNES - A steep fall off in the far infrared
Aims. We present photometric data of debris disks around HIP 103389 (HD
199260), HIP 107350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in
the context of our Herschel Open Time Key Program DUNES (DUst around NEarby
Stars). Methods. We used Herschel/PACS to detect the thermal emission of the
three debris disks with a 3 sigma sensitivity of a few mJy at 100 um and 160
um. In addition, we obtained Herschel/PACS photometric data at 70 um for HIP
103389. Two different approaches are applied to reduce the Herschel data to
investigate the impact of data reduction on the photometry. We fit analytical
models to the available spectral energy distribution (SED) data. Results. The
SEDs of the three disks potentially exhibit an unusually steep decrease at
wavelengths > 70 um. We investigate the significance of the peculiar shape of
these SEDs and the impact on models of the disks provided it is real. Our
modeling reveals that such a steep decrease of the SEDs in the long wavelength
regime is inconsistent with a power-law exponent of the grain size distribution
-3.5 expected from a standard equilibrium collisional cascade. In contrast, a
very distinct range of grain sizes is implied to dominate the thermal emission
of such disks. However, we demonstrate that the understanding of the data of
faint sources obtained with Herschel is still incomplete and that the
significance of our results depends on the version of the data reduction
pipeline used. Conclusions. A new mechanism to produce the dust in the
presented debris disks, deviations from the conditions required for a standard
equilibrium collisional cascade (grain size exponent of -3.5), and/or
significantly different dust properties would be necessary to explain the
potentially steep SED shape of the three debris disks presented. (abridged)Comment: 14 pages, 4 figures, accepted by A&
LBT observations of the HR 8799 planetary system: First detection of HR8799e in H band
We have performed H and Ks band observations of the planetary system around
HR 8799 using the new AO system at the Large Binocular Telescope and the PISCES
Camera. The excellent instrument performance (Strehl ratios up to 80% in H
band) enabled detection the inner planet HR8799e in the H band for the first
time. The H and Ks magnitudes of HR8799e are similar to those of planets c and
d, with planet e slightly brighter. Therefore, HR8799e is likely slightly more
massive than c and d. We also explored possible orbital configurations and
their orbital stability. We confirm that the orbits of planets b, c and e are
consistent with being circular and coplanar; planet d should have either an
orbital eccentricity of about 0.1 or be non-coplanar with respect to b and c.
Planet e can not be in circular and coplanar orbit in a 4:2:1 mean motion
resonances with c and d, while coplanar and circular orbits are allowed for a
5:2 resonance. The analysis of dynamical stability shows that the system is
highly unstable or chaotic when planetary masses of about 5 MJup for b and 7
MJup for the other planets are adopted. Significant regions of dynamical
stability for timescales of tens of Myr are found when adopting planetary
masses of about 3.5, 5, 5, and 5 Mjup for HR 8799 b, c, d, and e respectively.
These masses are below the current estimates based on the stellar age (30 Myr)
and theoretical models of substellar objects.Comment: 13 pages, 10 figures, A&A, accepte
- …
