Abstract

HR8799 is a nearby A-type star with a debris disk and three planetary candidates recently imaged directly. We undertake a coherent analysis of various portions of observational data on all known components of the system. The goal is to elucidate the architecture and evolutionary status of the system. We try to further constrain the age and orientation of the system, orbits and masses of the companions, as well as the location of dust. From the high luminosity of debris dust and dynamical constraints, we argue for a rather young system's age of <50Myr. The system must be seen nearly, but not exactly, pole-on. Our analysis of the stellar rotational velocity yields an inclination of 13-30deg, whereas i>20deg is needed for the system to be dynamically stable, which suggests a probable inclination range of 20-30deg. The spectral energy distribution is naturally reproduced with two dust rings associated with two planetesimal belts. The inner "asteroid belt" is located at ~10AU inside the orbit of the innermost companion and a "Kuiper belt" at >100AU is just exterior to the orbit of the outermost companion. The dust masses in the inner and outer ring are estimated to be ~1E-05 and 4E-02 M_earth, respectively. We show that all three planetary candidates may be stable in the mass range suggested in the discovery paper by Marois et al. 2008 (between 5 and 13 Jupiter masses), but only for some of all possible orientations. Stable orbits imply a double (4:2:1) mean-motion resonance between all three companions. We finally show that in the cases where the companions themselves are orbitally stable, the dust-producing planetesimal belts are also stable against planetary perturbations.Comment: 12 pages, 14 figures, 4 tables, accepted to be published in Astronomy & Astrophysics (May 20, 2009

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019