48 research outputs found

    The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma

    Get PDF
    Background: Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. Methods: We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. Results: Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. Significance: SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC. © 2014 Davison et al

    A high-precision near-infrared survey for radial velocity variable low-mass stars using CSHELL and a methane gas cell

    Get PDF
    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2-M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25-150 Myr) moving groups, the young field star ϵ Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8-15 m s-1with a long-term stability of 15-50 m s-1 over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25-50 m s-1 at ≈2.3125 μm, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3σ-5σ. Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s-1 in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs

    Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy

    Get PDF
    Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Earthquakes, quaternary faults, and seismic hazard in California

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Sexual Addiction 25 Years On: A Systematic and Methodological Review of Empirical Literature and an Agenda for Future Research

    No full text
    In 1998, Gold and Heffner authored a landmark review in Clinical Psychology Review on the topic of sexual addiction that concluded that sexual addiction, though increasingly popular in mental health settings, was largely based on speculation, with virtually no empirical basis. In the more than two decades since that review, empirical research around compulsive sexual behaviors (which subsumes prior research about sexual addiction) has flourished, ultimately culminating in the inclusion of a novel diagnosis of Compulsive Sexual Behavior Disorder in the eleventh edition of the World Health Organization’s International Classification of Diseases. The present work details a systematic review of empirical research published between January 1st, 1995 and August 1st, 2020 related to compulsive sexual behaviors, with a specific focus on evaluating the methodologies of that literature. This review yielded 371 papers detailing 415 individual studies. In general, the present review finds that, although research related to compulsive sexual behaviors has proliferated, much of this work is characterized by simplistic methodological designs, a lack of theoretical integration, and an absence of quality measurement. Moreover, the present review finds a virtual absence of high-quality treatment-related research published within this time frame. Implications of these findings for both clinical practice and future research are discussed

    Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay,WA

    No full text
    Studying modern microbial mats can provide insights into how microbial communities interact with biogeochemical cycles. High-resolution, two-dimensional distributions of porewater analytes were determined in the upper three layers of a modern microbial mat from Nilemah, Shark Bay, Western Australia, using colorimetric diffusive equilibration in thin film (DET) and diffusive gradients in thin film (DGT) techniques. The colorimetric DET and DGT techniques were used to investigate the co-distributions of sulfide, iron(II), and phosphate and the alkalinity. Two-dimensional distributions of sulfide, iron(II) and phosphate showed a high degree of spatial heterogeneity under both light and dark conditions. However, average concentration profiles showed a clear shift in overall redox conditions between light and dark conditions. During light deployments, iron(II) and sulfide concentrations were generally low throughout the entire microbial mat. In contrast, during dark deployments, when anoxic conditions prevailed, higher concentrations of iron(II) and sulfide were observed and the sulfide boundary migrated towards the upper layer of the mat. Similar to the iron(II) profile, the phosphate profile showed an increase in concentration at night, suggesting that phosphate was released through the dissolution of iron–phosphate complexes under anoxic conditions.However, two-dimensional distributions revealed that hot spots of phosphate and iron(II) did not coincide, suggesting that porewater phosphate was mainly regulated by diel metabolic changes in the mat. Alkalinity profiles also demonstrated an increase in concentration at night, probably related to high rates of sulfate reduction under dark conditions. Complimentary microelectrode measurements of oxygen and sulfide confirmed that light-limited microbial communities play a significant role in regulating porewater solute concentrations, especially through photosynthetic activity that supports rapid re-oxidation of sulfide during the day. Sulfide was not detected in the upper layers (ca. 4 mm) of the mat by microelectrode measurements, but was found at those depths by the time-integratedDGT measurements. Complimentary silver foil deployments also showed a 2D distribution of sulfate-reducing activity occurring under oxic conditions in the top layers. DGT, O2 and sulfide microelectrode profiles and silver foils confirmed hotspots of sulfide production coinciding with cyanobacterial photosynthesis. Two-dimensional porewater analyte distributions showed significant small-scale heterogeneity, highlighting the complexity of such dynamic ecosystems and the advantage of two-dimensional methods
    corecore