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We show here that computer game players can build high-quality crystal structures.

Introduction of a new feature into the computer game Foldit allows players to build and real-

space refine structures into electron density maps. To assess the usefulness of this feature,

we held a crystallographic model-building competition between trained crystallographers,

undergraduate students, Foldit players and automatic model-building algorithms. After

removal of disordered residues, a team of Foldit players achieved the most accurate structure.

Analysing the target protein of the competition, YPL067C, uncovered a new family of

histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this

study, we conclude that crystallographers can utilize crowdsourcing to interpret electron

density information and to produce structure solutions of the highest quality.
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‘M
acromolecular refinement against high-resolution
data is never finished, only abandoned’1. George
Sheldrick’s statement on the labour-intensive nature

of model building and refining crystal structures reflects the
difficulty in producing highly accurate models. As a result, B85%
of deposited protein crystal structures contain discernable errors2.
Unfortunately, as crystal structures are frequently used as the
basis of further studies, inaccurate crystal structures can cause
significant harm to the scientific process. Continued
improvement of crystal structure accuracy therefore remains an
important goal within the biology community.

Recently, in a class assignment, we asked 57 undergraduate
students to build the structure of a protein, lectin scytovirin3,
using only the model-building program Coot and an electron
density map downloaded from the electron density server4.
Students were not given the amino-acid sequence of the protein,
but were provided with the position of the N-terminal amino
acid. The students were instructed to build the structure of the
protein, residue by residue, into the 2Fo� Fc electron density
map. Many students expressed appreciation for the puzzle-like
quality of the assignment. In addition to learning about protein
structure, B10% of these students improved on the previously
published model4. One student even generated a structure that
ranked in the 100th percentile in both Molprobity clashscore and
total score when compared with other structures in its resolution
range. These results raised the intriguing possibility that even a
relatively small group of amateur model builders could
collectively build higher-quality models than a single trained
crystallographer. This concept was remarkably reminiscent of
ideas recently championed by the online protein-folding
computer game Foldit5.

On the basis of the success of the undergraduate students in
improving a published crystal structure, we hypothesized that
crystallographic model building through crowdsourcing might
result in more accurate crystal structures than those resulting
from traditional model-building methods. Thus, we added
electron density features to Foldit to allow players to build
directly into density. We then administered a competition to
determine if crowdsourcing crystal structures could lead to top-
notch structural models. The competition showed that Foldit
players could build very high-quality crystal structures into
electron density maps, opening up a new method for building and
refining crystal structures. In addition, solving the structure of the
competition’s test protein unexpectedly led to the discovery a new
family of histidine triad (HIT) proteins potentially involved in
preventing amyloid fibre formation.

Results
Adding electron density to Foldit. Foldit is a popular video game
that crowdsources protein structure prediction5, challenging
players to discover low-energy protein models by exploring
protein conformational space. The newest version of Foldit
provides players with electron density maps and the associated
protein sequences, and asks players to use experimental data to
guide protein folding (Fig. 1; Supplementary Fig. 1). With these
new features, players can trim maps around a model and
customize features of the electron density map, such as contour
level, rendering style and transparency (Supplementary Fig. 1).
The standard Foldit score function is supplemented with a fit-to-
density term, allowing in-game structure minimization similar to
crystallographic real-space refinement6. Foldit players are able to
view the fit-to-density score for each residue of a model,
providing valuable feedback about specific parts of a model that
require more attention. As a preliminary test of this feature, we
gave an electron density puzzle to the Foldit players that was

nearly identical to the lectin scytovirin classroom assignment
mentioned above, and found that the Foldit players were also able
to improve on the published scytovirin structure (Supplementary
Note 1; Supplementary Fig. 2).

The model-building competition. We then held a crystal-
lographic model-building competition to compare the effectiveness
of different model-building approaches. Five groups of competitors
took part in our model-building competition: (1) 469 Foldit players
worldwide, (2) two trained crystallographers, (3) 61 undergraduate
students in the University of Michigan class MCDB411 (Intro-
duction to Protein Structure and Function) who built the structure
as a class assignment, (4) Phenix Autosolve7,8 and (5) MR-
Rosetta9. We chose YPL067C, a yeast protein with no significant
sequence similarity to any structure in the Protein Data Bank
(PDB) (Supplementary Note 2) as the target for our competition.
In addition, YPL067C was chosen for its biological interest, as
previous studies suggested that YPL067C is involved in preventing
amyloid toxicity10. Crystals of this protein diffracted to 1.9 Å
resolution (Table 1). We asked all human competitors to build the
best possible protein structure that they could given the
protein sequence, a secondary structure prediction and an
experimentally phased, density refined map of YPL067C. The
MCDB411 class assignment was conducted similarly to the
previous crystallography assignment discussed above, in which
undergraduates improved on a published crystal structure4. As
before, the undergraduates lacked previous model-building
experience. In contrast, 54% of the participating Foldit players
had attempted to solve early electron density puzzles in Foldit and
thus had some experience in Foldit-based model building. Both the
trained crystallographers and undergraduates used the model-
building and real-space refinement program Coot11, whereas the
Foldit players used the Foldit version released on 14 October 2015.
None of the competitors were given any starting points for
building, and thus they needed to establish the relationship
between the electron density and the protein’s sequence.

The various groups used different approaches. The students
and trained crystallographers worked independently, generally
utilizing large aromatic residues to identify the relationship
between sequence and electron density features. The best Foldit
solutions, in contrast, came from a group of players working
collaboratively, with one player serving as the trailblazer who
contributed the majority of the moves towards the creation of the
model (Fig. 1), and other players providing detailed structural
tweaks and refinements (Supplementary Movie 1). Although the
Foldit players also used a large aromatic residue to initially
anchor the sequence similar to the Coot users, their building
process sampled conformational space very widely
(Supplementary Movie 1), unlike the Coot users. The Foldit
players used many different types of building tools, including
constraint changes (band, freeze and cut actions), automated
minimization algorithms (global wiggle, local wiggle and shake
actions) and tools to modify secondary structure (rebuild and
tweak actions) (Supplementary Fig. 3).

To determine which group produced the best structural
models, we used an automated refinement procedure12 on all
the structures, and then compared key crystallographic statistics.
These statistics consisted of Rfree, r.m.s.d.’s of bonds and angles,
the number and severity of steric clashes (represented by
Molprobity clashscore13), and Ramachandran outliers.
Analysing the Rfree values, we quickly realized that the Foldit
players were at a distinct disadvantage (Supplementary Fig. 4).
Whereas the Coot users, Phenix Autosolve and MR-Rosetta were
able to exclude regions that had poor quality electron density, the
current version of Foldit required that players model the entire
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sequence without gaps, retaining all disordered residues. Because
disordered atoms do not substantially contribute to X-ray
diffraction, modelling of disordered residues will disagree with
diffraction data and inflate Rfree values. To correct for this
deficiency in Foldit, we pruned the Foldit models afterwards to
include only those residues modelled by the top trained
crystallographer, so that they contained only the well-ordered
regions of the protein. We then re-refined the pruned Foldit
structures and compared them with the other models.

The Foldit structures improved considerably after pruning. As
a result, the top pruned Foldit structure was the overall highest-
quality structure produced in the competition (Fig. 2) as
measured by geometry, density fit and steric clashes. In addition
to the Rfree value of the pruned Foldit structure becoming
marginally better than that achieved by the trained crystal-
lographers and containing zero Ramachandran outliers, the Foldit
structure had the lowest level of steric clashes (Fig. 2). According
to Molprobity13, the top Foldit structure is an exceptional model,
ranking in the 100th percentile in both its overall Molprobity
score and clashscore of all structures in the PDB of similar
resolution (1.95±0.25 Å). The superiority of the top Foldit
structure can be attributed to better side-chain conformations
than those in the top structure produced by the trained
crystallographers (Supplementary Fig. 5). Better Foldit scores
were associated with lower Rfree values (Supplementary Fig. 6),

suggesting that the Foldit model-building strategy and its scoring
algorithm could be generalizable as a means of producing high-
quality structures.

Discussion
Here we show that Foldit players can build structural models at
least as effectively as trained crystallographers and state-of-the-art
automated methods, enabling a novel crowd-powered strategy for
solving high-accuracy crystal structures. Combined with the
ability to generate molecular replacement solutions in Foldit, and
therefore to circumvent the need for experimental phases in some
cases14, it is now potentially possible to obtain complete structure
solutions using Foldit given only a native crystallography data set.
Citizens hold a tremendous reserve of brainpower that remains
largely untapped by the scientific community. The new Foldit
electron density feature has revealed that non-expert citizen
scientists are capable of using structural data to build first-rate
models, and we expect that Foldit will be a powerful tool for
crowdsourcing many new high-quality structures.

This surprising win by Foldit players suggests that, in at least
some cases, this video game can help produce crystallographic
models of higher quality than those from trained crystal-
lographers or automated model-building algorithms alone. The
difference in accuracy is likely in part the result of different

Figure 1 | Snapshots of Foldit players building YPL067C in the Foldit user interface. For the complete path of the Foldit model building, see

Supplementary Movie 1. The starting point for the puzzle (top left) presented the electron density map and the protein sequence to the player. The players

then used Trp108 to help anchor the sequence in electron density (top middle) before beginning to fold secondary structure elements (top right through

bottom left). After many rounds of modification in Foldit (bottom middle and Supplementary Movie 1), the players arrived at a high-scoring solution in

which the ordered regions of electron density were well fit by YPL067C (bottom right). Disordered regions were later pruned.
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underlying philosophies behind Coot and Foldit. Whereas Coot
primarily uses a real-space refinement system15 that only respects
local geometry, the Rosetta force field used by Foldit is much
more extensive, including additional steric, electrostatic and
solvation terms, as well as statistical potentials based on observed
backbone torsions and side-chain rotamers6. That some of the
Foldit models were of higher quality than those of trained
crystallographers suggests that expert model builders might also
benefit from the Foldit force field for real-space refinement.
Human intervention either by crystallographers or Foldit players
is clearly helpful, as both Phenix Autosolve and MR-Rosetta on
their own produced suboptimal structures. The collaborative
building process used by the Foldit players could also be a
beneficial strategy for professional crystallographers, who could
achieve a similar effect by either having multiple laboratory
members take turns working on model building and refinement
or by submitting their crystal refinement problems to Foldit.
Looking forward, we hope that further analysis of electron density
puzzle solutions in Foldit can inform continued improvement of
automated structure solution algorithms.

Foldit players might also be tasked with improving structures
of questionable quality already in the PDB. These Foldit puzzles
would benefit the entire community of scientists that depend on
accurate structural models. Editing of nearly complete structures
could form a base of easier Foldit puzzles for new players,
allowing players to practice their model-building skills before
moving to more difficult de novo model-building puzzles. To
further improve the capability for Foldit players to aid crystal-
lographers, ongoing development will make it possible for the
players to add or remove residues with insufficient electron

density, and have these changes accurately reflected in the Foldit
score. We envision a future in which professional crystal-
lographers frequently tap the collective model-building expertise
of Foldit players for help in the model-building, refinement and
validation steps of crystallography.

From an educational perspective, the participation of an
undergraduate class in this study explored how crystallographic
model building can be used not just to teach students the
structures and chemistry of proteins in great depth, but in
addition, to teach the scientific process. In our previous study,
students built into a high-resolution, fully refined map3. In the
study presented here, students received a lower-resolution,
unrefined map and no starting place for building. Dealing with
disordered residues, the students were forced to interpret data of
varying quality and to decide when the data became too
ambiguous to draw firm conclusions. Similar decision-making
processes govern the use of scientific data across many disciplines.
This assignment thus helped give students a realistic view about
the power and limitations of the scientific method. Importantly,
the ease with which students and Foldit players were able to
interpret and understand density maps suggests that scientists
other than crystallographers can very readily interpret electron
density maps, which will assist them in designing or analysing
experiments based on crystal structures.

YPL067C’s structure yielded unexpected insights into its
biological function. Despite the lack of sequence homology to
any protein in the PDB, a DALI16 search of YPL067C
(Supplementary Table 1) found that it is structurally similar to
members of the widely conserved superfamily of histidine triad
(HIT) proteins. These proteins contain three histidine residues
with an almost identical spatial organization to that of YPL067C,
as well as a �-sheet core nested inside a similar arrangement of
loops and helices (Fig. 3). HIT proteins have been shown to be
involved in diverse cellular stress responses, such as DNA damage,
oxidative stress and induced apoptosis17,18. However, the specific
in vivo activity of HIT proteins remains unclear17. Although
YPL067C bears some resemblance to known HIT proteins, it is
sequentially and structurally distinct (Supplementary Fig. 7). Its
most notable distinguishing structural characteristic is an open
channel not found in other HIT proteins (Supplementary Note 2).
YPL067C’s characterization makes it the founding member of a
new family we are calling HTC (for histidine triad with channel),
with YPL067C being the first member, HTC1. The HTC family
contains over 900 members found in a wide variety of eukaryotes
and viruses (Supplementary Note 2). As mentioned above, HTC1
null mutants increase the toxicity of amyloid overproduction10.
We find here that HTC1 is very effective in preventing in vitro
amyloid formation of three model proteins, Ab1–40, a-synuclein
and reduced carboxy-methylated a-lactalbumin (RCMalA; Fig. 4).
On the basis of docking simulations, HTC1 may bind to unfolded
proteins using its conserved channel (Supplementary Note 2;
Supplementary Fig. 8). Our crowdsourcing-enabled discovery of a
new family of proteins involved in preventing amyloid formation
provides insight into a novel physiological role of the ubiquitous
HIT proteins.

Methods
Electron density in Foldit. To facilitate work on electron density data in Foldit,
new visualizations and tools, along with a tutorial puzzle to introduce them, were
developed and distributed to Foldit players in periodic software updates. Electron
density maps in Foldit are displayed as a visual guide in the form of an isosurface.
Players have control over parameters of the density isosurface, such as the contour
level, surface texture, transparency and colour, and can tag regions of the density
with notes. After initial testing, it was clear that density visualization alone was
insufficient to improve model building by Foldit players. Players simply ignored the
density, finding that their existing, familiar strategies were most competitive on
Foldit leaderboards. In response, we adapted the Rosetta fit-to-density score term

Table 1 | Crystallography statistics for HTC1.

SeMet HTC1 (top
pruned Foldit)

Native HTC1

Data collection
Wavelength (Å) 0.9876 0.97851
Space group P43212 P43212
Cell dimensions

a, b, c (Å) 63.3, 63.3, 117.8 62.5,62.5,117.6
a, b, g (�) 90, 90, 90 90, 90, 90

Resolution (Å) 50–1.95 (1.98–1.95) 42.81–1.83
(1.89–1.83)

Rmerge (%) 0.077 (0.940) 0.074 (0.683)
I/sI 59.5 (1.8) 12.7 (2.0)
Completeness (%) 99 (89) 100 (100)
Redundancy 12.4 (7.5) 7.8 (7.7)
Figure of merit 0.31
CC1/2 0.998 (0.916) 0.998 (0.873)

Refinement
Resolution (Å) 1.95 1.83
No. of reflections 18,107 21,161
Rwork/Rfree 0.26/0.28 0.20/0.25
No. of non-hydrogen atoms 1,343 1,663

Protein 1,305 1,513
Ligand/ion 0 12
Water 38 138

Average B-factors 53.8 48.8
Protein 53.8 49.0
Ligand/ion 51.9
Water 54.3 45.7

R.m.s.d’s
Bond lengths (Å) 0.008 0.009
Bond angles (�) 1.0 0.89

SeMet, selenenomethionine.
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elec_dens_fast into the Foldit score function6. This not only provides competitive
incentive to match the density, but also allows Foldit automated tools such as
structure minimization to be guided by electron density, similar to crystallographic
real-space refinement. Under this configuration, players were able to fit models to
several experimental electron density maps with high accuracy. An important
feature was added later that allowed players to trim excess density that was distant
from the player’s model from the visualization. According to Foldit player
testimony, this feature has proved invaluable on certain experimental density maps
where it allowed a clearer interpretation of relevant density. To protect the integrity
of unpublished crystallographic work, electron density data were obfuscated before
online distribution to Foldit players.

The competition. Phenix Autosolve7,8, with model-building disabled, was used to
create density-modified maps of selenenomethionine (SeMet) YPL067C. To make
the map manageable for the Foldit program, the map was masked beyond 5 Å from
the initial solution at the start of the competition. This map was given to Foldit
players, MCDB411 students and the experienced crystallographers for model
building. The individual responsible for model building and refining the initial
structure solution of YPL067C, before the contest was initiated, had no contact
with any of the competitors.

Sixty-one students in the University of Michigan undergraduate class
MCDB411 (Introduction to Protein Structure and Function) were introduced to
the assignment through a description of the previous iteration of the assignment in
class4, together with a 1.5 h lecture on X-ray crystallography. Students then had two
in-class computer laboratory sessions in which features of Coot were presented. In
the first 1.5 h lab session, the students were given basic instructions on opening
electron density maps and molecules, changing map levels, scrolling and changing
map size, finding secondary structure elements, converting Ca representations to
all-atom molecules, placing helices and strands, adding terminal residues, real-
space refinement, controlling regularization and refinement, rotating and
translating atoms and residues, viewing the skeleton, mutating residues, and
changing rotamers. The instructors suggested that changing the weighting of the
real-space refinement from the default value of 60–10 and making subsequent
changes to this value as needed could help in the building process. In the second
1.5 h lab session, the students were taught how to merge molecules, look for
grouped tryptophans, phenylalanines and/or tyrosines as starting places for
building, and use validation tools such as density fit analysis, geometry fit analysis
and unmodelled blobs. Four instructors were present in the first lab session and
three in the second to answer questions on the operation of Coot. Starting from the
initial lab session, students were given a total of 1 month to complete the
assignment. During this period, the instructor held walk-in help sessions twice a
week for 1.5 h each and answered questions on the operation of Coot as well as
general model-building questions. Common questions included how to identify
density for specific sequences, how to correctly merge molecules and how to
approach gaps in electron density. Regarding gaps in density, students were told to
model through gaps only if they were confident that the modelling would be
correct based on the size of the gap and the number of residues they were
modelling in. Students were not told what to do in specific cases of building
through disordered segments. They were informed that water molecules would not
be included in grading. One student asked whether there were external validation
tools that could help and was told that the Molprobity server might be useful.
Students were allowed to discuss the project and ask each other questions, but were
required to do their own model building.

A Foldit puzzle was posted online with the masked electron density map and a
model of the target polypeptide in fully extended conformation. Players were
challenged to fold the extended polypeptide into the electron density map to
achieve a good fit to density. Any advice given to MCDB411 students by the
instructors as to how to begin model building was also posted on the Foldit
messaging board. After 4 weeks, the puzzle was closed and 900,000-player models
were scored and ranked according to the Rosetta energy function. The top scoring
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models were clustered into a set of 1,000 such that no two aligned to o1.0 Å Ca

r.m.s.d. To this clustered set, we added the 50 best unique models produced by
Foldit teams or soloists, as well as any models flagged by Foldit players for special
consideration—1,094 Foldit models in total. The puzzle was open to Foldit players
for 28 days. Members of the winning team began playing the day after the puzzle
opened, and produced the winning structure B23 days later—4 days before the
puzzle closed.

Two trained crystallographers were given the same number of days for model
building as the students and Foldit players. They were given specific instructions
not to use tools outside of Coot or Molprobity and not to interact with each other
during model building. The trained crystallographers spent B8 and 14 h,
respectively, working on the puzzle. The trained crystallographers reported using
the following approach to the puzzle, which corresponds well with what the
instructor observed with many of the undergraduate students. First, they looked for
large density blobs that might correspond to large aromatic side chains such as Trp,
Tyr or Phe. Working forwards and backwards from the Trp–Phe–Val–Asn
sequence proved particularly useful. Modelling in a few of these large residues led
to the assignment of density to sequence location. The direction of the polypeptide
chain was reversed on a few occasions, but was fixed by looking at the carbonyl
density. The Find Secondary Structure tool in Coot was used, especially for regions
where the density was poor. Real Space Refine Zone was used with the refinement
weight set to 20 or 10, based on the instructor’s suggestion for building in an
unrefined map. Regions where the density was very poor and decisions had to be
made about whether to keep trying to build or not proved to be the hardest part of
the task. The trained crystallographers reported that at first they did build in these
sections of poor electron density. However, when they realized the extent of the
guessing involved, they subsequently removed most of the model in these areas.
After modelling in the residues, the trained crystallographers used the validation
tools in Coot, including Ramachandran plot, Rotamer analysis and Density Fit
analysis, which flagged areas with poor geometry. They also ran the structure
through MolProbity, which gave similar results to the Coot validation tools.
Finally, the crystallographers fixed problem areas as best as possible with the
Coot modelling tools, such as Flip Peptide, Rotamers, Regularize Zone and Real
Space Refine Zone. When asked to describe the difficulty level of this assignment,
the trained crystallographers rated it as somewhat difficult (on a scale of: very
difficult, somewhat difficult, neither easy nor difficult, somewhat easy and very
easy).

Phenix Autosolve7,8 was run with default parameters (using phase_and_build)
to produce the Autosolve model. The MR-Rosetta model was obtained by relaxing
and rebuilding the Autosolve model in the same electron density map provided to
human groups, using Rosetta mr_protocols9 with nstruct¼ 10 and selecting the
model with the lowest Rfree. ARP/Warp19 and Phenix Autobuild20 did not create
models of as high quality as Phenix Autosolve or MR-Rosetta, and were thus not
analysed in the competition.

After completion of the competition, all structures were automatically refined
using Phenix to analyse the results. The refinement strategy included XYZ
coordinates, temperature factors and updating waters. Notably, the best structures
from Foldit, as measured by Rfree, came from the group of highest-scoring Foldit
structures according to Foldit score.

Bioinformatics. YPL067C sequence conservation was analysed using a four-
iteration PSI-BLAST of the UniRef50 database, with an E-value cutoff of 0.005. No
sequences in the PDB were found. Sequence conservation was projected onto the
structure of YPL067C using the Consurf server21. The top DALI16 match to the
crystal structure of YPL067C was to a HIT protein of unknown function from
Clostridium difficile (PDB: 4EGU), with a Z-score of 4.9. The top 47 hits were all
HIT proteins with Z-scores ranging from 4.9 to 4.2 (Z-scores 42.0 are considered
significant). Secondary structure predictions for the competition were generated
using PSIPRED22.

Protein expression and purification. The gene for YPL067C was amplified from
yeast strain Y2HGold (Clontech) and cloned into a pET28-sumo plasmid using
primer 1 (50-AAATATGGATCCATGCAACAAGATATCGTCAACGATCAC
CAG-30) and primer 2 (50-AAATATCTCGAGTCAGGCAAGTGGCTCGAAAC
C-30). pET28-sumo-ypl067C was transformed into Escherichia coli BL21(DE3)
cells.

Cells were grown at 37 �C overnight in 100 ml Luria Broth (containing
100 mg ml� 1 kanamycin), and 10 ml was used to inoculate 1 litre Luria Broth
(containing 100mg ml� 1 kanamycin). At early log phase, the temperature was
reduced to 20 �C and 0.1 mM isopropyl b-D-1-thiogalactopyranoside was added to
induce expression overnight. Cells were collected by centrifugation and
resuspended in 100 ml lysis buffer (40 mM Tris, 10 mM sodium phosphate,
400 mM NaCl, 10% glycerol, 10 mM imidazole, pH 8.0) enriched with 1 mg ml� 1

DNaseI, 1 mM MgCl2 and two tablets of complete EDTA-free protease inhibitor
(Roche). Cells were lysed by two French press cycles at 1,300 p.s.i. and centrifuged
at 37,000 g for 30 min at 4 �C. The supernatant was run through a Ni-HisTrap 5 ml
column (GE Healthcare) pre-equilibrated with lysis buffer at a rate of
1.5 ml min� 1. Following binding, the column was washed with 60 ml lysis buffer.
The protein was eluted with 20 ml lysis buffer enriched with 500 mM imidazole. To
cleave the sumo-His� 6 tag, 10 ml ULP1 protease (from stock of 50 mg ml� 1) was
added to the eluted solution. A volume of 10 ml b-mercaptoethanol was added and
the solution was dialysed overnight in 40 mM Tris, 10 mM sodium phosphate,
400 mM NaCl, 10% glycerol, pH 8.0. To remove the tag, the solution was run
through a Ni-HisTrap 5 ml column (GE Healthcare) pre-equilibrated with dialysis
buffer at a rate of 1.5 ml min� 1, and the flowthrough was saved and diluted in
eight volumes of 20 mM Tris, pH 8.0. The protein was then run through a HiTrap
Q HP 5 ml column (GE Healthcare), and the flowthrough contained 495% pure
YPL067C as measured by SDS–polyacrylamide gel electrophoresis. Before each
experiment, YPL067C was exchanged into appropriate buffer. Expression and
purification of SeMet YPL067C was performed with the same protocol except a
methionine auxotroph variant of E. coli BL21(DE3) and SelenoMethionine
Medium Complete (Molecular Dimensions) were used.

a-Synuclein was expressed and purified using the protocol described
previously23 with minor modifications. In brief, 1% of the overnight grown culture
was transferred in fresh media and induced with 0.8 mM isopropyl b-D-1-
thiogalactopyranoside for 4 h after the optical density of the culture reached 0.6.
The induced cells were pelleted at 4,000 r.p.m. and resuspended in 25 ml lysis buffer
(10 mM Tris, 1 mM EDTA, pH 8). The lysed cells were then boiled at 95 �C for
15–20 min and centrifuged at 11,000 r.p.m. for 20 min. The supernatant was
thoroughly mixed with 10% streptomycin sulfate (136 ml ml� 1) and glacial acetic
acid (228 ml ml� 1) then centrifuged at 11,000 r.p.m. for 30 min. To the clear
supernatant, an equal volume of saturated ammonium sulfate was added, and the
solution was incubated at 4 �C for 1 h with intermittent mixing. The precipitated
protein was separated by centrifugation at 11,000 r.p.m. for 30 min. The pellet was
dissolved in equal volumes of absolute ethanol (chilled) and 100 mM ammonium
acetate. Finally, the pellet was washed (twice; optional) with absolute ethanol, dried
at room temperature and resuspended in 10 mM Tris, pH 7.4. The protein solution
was filtered through a 50 kDa cutoff column (AMICON, Millipore) followed
by ion-exchange chromatography (Q-sepharose) against a NaCl gradient.
The fractions of pure protein eluted at B300 mM NaCl were checked on

SDS–polyacrylamide gel electrophoresis and the molecular weight was
confirmed by mass spectrometry. The pure fractions were pooled and
dialysed overnight against buffer (10 mM Tris and 50 mM NaCl, pH 7.4). The
concentration of a-synuclein was determined using e280¼ 5,600 M� 1 cm� 1.
The purified a-synuclein was stored at � 80 �C at a concentration of
B100 mM until use.

Ab1–40 peptide was purchased from AlexoTech AB (Umeå, Sweden) and
prepared as previously described24. Ab1–40 peptide was dissolved in 10 mM
NaOH to a peptide concentration of 1 mg ml� 1 and then sonicated for 1 min in an
ice bath before dilution in the assay buffer. The preparations were kept on ice.
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Figure 4 | HTC1 aggregation inhibition. HTC1 prevents amyloid formation of RCMLa (a) Ab1–40 (b) and a-synuclein (c), as measured by thioflavin T (ThT)

fluorescence at 490 nm.
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a-Lactalbumin (aLA) from bovine milk (cat: L6010) and porcine citrate
synthase (cat: C3260-5KU) were purchased from Sigma Inc. RCMaLA
was prepared as previously described25. aLA (500 mM; freshly prepared
in water) was incubated with 1 mM dithiothreitol in 0.5 M Tris and 1 mM
EDTA, pH 7.0, for 10 min, then 3 mM iodoacetic acid (out of 1 M stock solution in
water) was added and the solution incubated for another 30 min. aLA was then
dialysed into 50 mM phosphate buffer, pH 7.0, 100 mM KCl, 10 mM MgCl2.

Protein crystallization. Native and SeMet YPL067C crystals were grown at 20 �C
by vapour diffusion using both sitting (1ml drops) and hanging drop methods
(2ml drops). Drops were prepared by mixing a 1:1 solution of YPL067C
(25 mg ml� 1) and reservoir solution (5.6–8.1% glycerol, 1.6–2.1 M ammonium
sulfate and 0.1–0.2 M Tris). Crystals were cryoprotected by gradually supple-
menting the drop with glycerol up to 25% and were flash-frozen in liquid nitrogen.

X-ray crystallography. Data were collected at the Life Sciences Collaborative
Access Team (LS-CAT) beamlines at the Argonne National Laboratory’s Advanced
Photon Source at 100 K. The data were integrated and scaled using HKL2000.
Phases and initial model building of the SeMet derivative were obtained using
Phenix AutoSolve7,8. Native YPL067C was solved by molecular replacement with
the initial SeMet structure. Iterative refinement and model building were
performed using Phenix Refine12 and Coot11. Channel size was analysed using the
3V server26. Data collection and modelling statistics are shown in Table 1, and a
section of the structure in its 2mFo-DFc map shown in Supplementary Fig. 10.

Fibrillar aggregation assays. Fibrillar aggregation was monitored by a thioflavine
T (ThT) fluorescence assay. ThT is a benzothiazole dye that exhibits enhanced
fluorescence specifically on binding to amyloid fibrils. For RCMaLA aggregation
experiments, solutions containing 100mM RCMaLA, YPL067C in varying
concentrations and 20mM ThT were prepared in 50 mM potassium phosphate
buffer, pH 7.0, 100 mM KCl and 10 mM MgCl2 (ref. 25). The ThT fluorescence
assays with Ab1–40 peptide were performed with 2.5 mM Ab1–40 peptide, YPL067C
in varying concentrations and 20 mM ThT in PBS, pH 7.4, 1% dimethylsulphoxide.
The fibrillar aggregation of a-synuclein was tested in a solution of 70 mM a-
synuclein, YPL067C in desired concentrations and 20 mM ThT in PBS, pH 7.4. For
a-syuclein assays, four glass beads were added in each well to induce aggregation.

ThT fluorescence assays were performed with a final volume of 100 ml of the
prepared solution in black 96-microwell plates (costar, UV Plate, 96 well) that were
sealed to prevent evaporation. ThT fluorescence was measured in a Synergy HT
Multi-Mode Microplate Reader (Biotek) at 37 �C, with constant medium shaking.
Excitation and emission wavelengths were 440 and 490 nm, respectively. All
samples were assayed in triplicate and the assay was repeated twice. Incubation of
YPL067C with ThT alone produced no fluorescence increase.

Docking of a-synuclein and HTC1. HTC1 was docked against a 200-member
NMR ensemble of a-synuclein27 using ZDOCK 3.0.2 (ref. 28). The top five scoring
poses of HTC1 bound to each member of the ensemble were used to generate a
contact frequency map of the HTC1:a-synuclein interaction. To determine the
contact map, an interaction was assigned to a given residue pair if their Ca–Ca
distance was less than or equal to l � rmin

ij , where l¼ 1.2 and rmin
ij are taken from the

mean Ca–Ca distance for residue pairs that form intermolecular contacts in the
PDB29. For each intermolecular residue pair, we reported the contact probability
averaged over the extracted binding poses. To project the contact maps onto the
structures of a-synuclein and HTC1 on the same scale, the contact frequency for
each residue pair was averaged over all residues.

Analytical ultracentrifugation. Sedimentation velocity experiments of HTC1
(Supplementary Fig. 9) were performed using a Beckman ProteomeLab XL-I
analytical ultracentrifuge (Beckman Coulter). YPL067C was first dialysed against
20 mM HEPES, pH 7.5, then diluted to a concentration of 20 or 200mM using the
dialysis buffer. Samples were loaded into cells containing standard sector shaped
two-channel Epon-centerpieces with 1.2 cm path length (Beckman Coulter) and
equilibrated to 22 �C in the centrifuge for at least 1 h before sedimentation. All
samples were spun at 48,000 r.p.m. in a Beckman AN-50 Ti rotor (167431.7 g at the
centre of the cell), and the sedimentation of the protein was monitored con-
tinuously using the interference optics. Data analysis was conducted with SEDFIT
(version 14.1)30, using the continuous c(s) distribution model. The confidence level
for the ME (maximum entropy) regularization was set to 0.7. Buffer density and
viscosity were calculated using SEDNTERP (http://sednterp.unh.edu/).

Data availability. The final model of HTC1 is deposited in the PDB under the
code 5KCI. Other models and raw data are available on request.
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