1,071 research outputs found

    Accurate strain measurements in highly strained Ge microbridges

    Full text link
    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure

    3-Bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate inhibits cancer cell invasion in vitro and tumour growth in vivo

    Get PDF
    In search for new anticancer agents, we have evaluated the antiinvasive and antimigrative properties of recently developed synthetic coumarin derivatives among which two compounds revealed important activity: 3-chlorophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate and 3-bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate, Both drugs were able to inhibit cell invasion markedly in a Boyden chamber assay, the bromo derivative being more potent than the reference matrix metalloprotease (MMP) inhibitor GI 129471. In vivo, tumour growth was reduced when nude mice grafted with HT 1080 or MDA-MB231 cells were treated i.p. 3 days week(-1) with the bromo coumarin derivative. These effects were not associated with the inhibition of urokinase, plasmin, MMP-2 or MMP-9. The mechanism of action of the drugs remains to be elucidated. However, these two coumarin derivatives may serve as new lead compounds of an original class of antitumour agents

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    Multi-host environments select for host-generalist conjugative plasmids

    Get PDF
    BACKGROUND: Conjugative plasmids play an important role in bacterial evolution by transferring ecologically important genes within and between species. A key limit on interspecific horizontal gene transfer is plasmid host range. Here, we experimentally test the effect of single and multi-host environments on the host-range evolution of a large conjugative mercury resistance plasmid, pQBR57. Specifically, pQBR57 was conjugated between strains of a single host species, either P. fluorescens or P. putida, or alternating between P. fluorescens and P. putida. Crucially, the bacterial hosts were not permitted to evolve allowing us to observe plasmid evolutionary responses in isolation. RESULTS: In all treatments plasmids evolved higher conjugation rates over time. Plasmids evolved in single-host environments adapted to their host bacterial species becoming less costly, but in the case of P. fluorescens-adapted plasmids, became costlier in P. putida, suggesting an evolutionary trade-off. When evolved in the multi-host environment plasmids adapted to P. fluorescens without a higher cost in P. putida. CONCLUSION: Whereas evolution in a single-host environment selected for host-specialist plasmids due to a fitness trade-off, this trade-off could be circumvented in the multi-host environment, leading to the evolution of host-generalist plasmids
    corecore