16 research outputs found

    Therapeutic targeting of autophagy in neurodegenerative and infectious diseases.

    Get PDF
    Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating.We are grateful to the Wellcome Trust (095317/Z/11/Z Principal Research Fellowship to D.C. Rubinsztein and strategic award 100140), the National Institute for Health Research Biomedical Research Unit in Dementia at Addenbrooke’s Hospital (D.C. Rubinsztein), and the National Institutes of Health (AI042999 and AI111935; V. Deretic) for funding our work. D.C. Rubinsztein has received grant funding from MedImmune and is a scientific advisor for E3Bio and Bioblast.This is the final version. It was first published by Rockefeller University Press at http://jem.rupress.org/content/early/2015/06/17/jem.20150956.full

    Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux

    No full text
    Parkinson’s disease (PD) is characterized by accumulation of α-synuclein and degeneration of neuronal populations in cortical and subcortical regions. Mitochondrial dysfunction has been considered a potential unifying factor in the pathogenesis of the disease. Mutations in genes linked to familial forms of PD, including SNCA encoding α-synuclein and PINK1, have been shown to disrupt mitochondrial activity. We investigated the mechanisms through which mutant Pink1 might disrupt mitochondrial function in neuronal cells with α-synuclein accumulation. For this purpose, a neuronal cell model of PD was infected with virally-delivered Pink1, and was analyzed for cell survival, mitochondrial activity and calcium flux. Mitochondrial morphology was analyzed by confocal and electron microscopy. These studies showed that mutant (W437X) but not wildtype Pink1 exacerbated the alterations in mitochondrial function promoted by mutant (A53T) α-synuclein. This effect was associated with increased intracellular calcium levels. Co-expression of both mutant Pink1 and α-synuclein led to alterations in mitochondrial structure and neurite outgrowth that were partially ameliorated by treatment with Cyclosporine A, and completely restored by treatment with the mitochondrial calcium influx blocker Ruthenium Red, but not with other cellular calcium flux blockers. Our data suggest a role for mitochondrial calcium influx in the mechanisms of mitochondrial and neuronal dysfunction in PD. Moreover, these studies support an important function for Pink1 in regulating mitochondrial activity under stress conditions
    corecore