167 research outputs found

    Nanoparticle-regulated phase behavior of ordered block copolymers

    Get PDF
    This document is the accepted manuscript version of a published article. Published by The Royal Society of Chemistry in the journal "Soft Matter" issue 8, DOI: 10.1039/b805540hAlthough block copolymer motifs have received considerable attention as supramolecular templates for inorganic nanoparticles, experimental observations of a nanostructured diblock copolymer containing inorganic nanoparticles—supported by theoretical trends predicted from a hybrid self-consistent field/density functional theory—confirm that nanoparticle size and selectivity can likewise stabilize the copolymer nanostructure by increasing its order– disorder transition temperature.Research Council of Norway under the NANOMAT Program Los Alamos National Laboratory || Contract No. DE-AC52-06NA25396 NSERC of Canada GEM Fellowship and a NOBCChE Procter and Gamble Fellowship

    A Census of Baryons and Dark Matter in an Isolated, Milky Way-sized Elliptical Galaxy

    Get PDF
    We present a study of the dark and luminous matter in the isolated elliptical galaxy NGC720, based on deep X-ray observations made with Chandra and Suzaku. The gas is reliably measured to ~R2500, allowing us to place good constraints on the enclosed mass and baryon fraction (fb) within this radius (M2500=1.6e12+/-0.2e12 Msun, fb(2500)=0.10+/-0.01; systematic errors are <~20%). The data indicate that the hot gas is close to hydrostatic, which is supported by good agreement with a kinematical analysis of the dwarf satellite galaxies. We confirm a dark matter (DM) halo at ~20-sigma. Assuming an NFW DM profile, our physical model for the gas distribution enables us to obtain meaningful constraints at scales larger than R2500, revealing that most of the baryons are in the hot gas. We find that fb within Rvir is consistent with the Cosmological value, confirming theoretical predictions that a ~Milky Way-mass (Mvir=3.1e12+/-0.4e12 Msun) galaxy can sustain a massive, quasi-hydrostatic gas halo. While fb is higher than the cold baryon fraction typically measured in similar-mass spiral galaxies, both the gas fraction (fg) and fb in NGC720 are consistent with an extrapolation of the trends with mass seen in massive galaxy groups and clusters. After correcting for fg, the entropy profile is close to the self-similar prediction of gravitational structure formation simulations, as observed in galaxy clusters. Finally, we find a strong heavy metal abundance gradient in the ISM similar to those observed in massive galaxy groups.Comment: 23 pages, 13 figures, 4 tables. Accepted for publication in the Astrophysical Journal. Minor modifications to match accepted version. Conclusions unchange

    High-pressure oxidation of ethane

    Get PDF
    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600-900 K and 20-100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10-80 bar and temperatures of 900-1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate constants for reactions on the C2H5O2 potential energy surface were adopted from the recent theoretical work of Klippenstein. In the present work, the internal H-abstraction in CH3CH2OO to form CH2CH2OOH was treated in detail. Modeling predictions were in good agreement with data from the present work as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C2H5 + O-2 reaction yields ethylperoxyl rather than C2H4 + HO2, the chain branching sequence CH3CH2OO -> CH2CH2OOH ->+O-2 OOCH2CH2OOH -> branching is not competitive, because the internal H-atom transfer in CH3CH2OO to CH2CH2OOH is too slow compared to thermal dissociation to C2H4 and HO2. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved

    Predictors of DAPSA28 remission in patients with psoriatic arthritis initiating a first TNF-inhibitor: results from 13 European registries.

    Get PDF
    OBJECTIVES In bio-naĂŻve patients with Psoriatic arthritis (PsA) initiating a Tumour Necrosis Factor inhibitor (TNFi), we aimed to identify baseline predictors of Disease Activity index for PsA in 28 joints (DAPSA28) remission (primary objective) and DAPSA28 moderate response at 6 months, as well as drug retention at 12 months across 13 European registries. METHODS Baseline demographic and clinical characteristics were retrieved and the three outcomes investigated per registry and in pooled data, using logistic regression analyses on multiply imputed data. In the pooled cohort, selected predictors that were either consistently positive or negative across all three outcomes, were defined as common predictors. RESULTS In the pooled cohort (n = 13 369), six-month proportions of remission, moderate response and 12-month drug retention were 25%, 34% and 63% in patients with available data (n = 6,954, n = 5,275 and n = 13 369, respectively). Baseline predictors of remission, moderate response and 12-month drug retention were identified, five common across all three outcomes. Odds ratios (95% confidence interval) for DAPSA28 remission were: age, per year: 0.97 (0.96-0.98); disease duration, years (10 vs ≀ 10 mg/l: 1.52 (1.22-1.89) and one mm increase in patient fatigue score: 0.99 (0.98-0.99). CONCLUSION Baseline predictors of remission, response and adherence to TNFi were identified, of which five were common for all three outcomes, indicating that the predictors emerging from our pooled cohort may be considered generalisable from the country- to disease-level

    Controlled Experiments of Hillslope Coevolution at the Biosphere 2 Landscape Evolution Observatory: Toward Prediction of Coupled Hydrological, Biogeochemical, and Ecological Change

    Get PDF
    Understanding the process interactions and feedbacks among water, porous geological media, microbes, and vascular plants is crucial for improving predictions of the response of Earth’s critical zone to future climatic conditions. However, the integrated coevolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled laboratory and uncontrollable field studies, the University of Arizona built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO comprises three replicated, heavily instrumented, hillslope-scale model landscapes within the environmentally controlled Biosphere 2 facility. The model landscapes were designed to initially be simple and purely abiotic, enabling scientists to observe each step in the landscapes’ evolution as they undergo physical, chemical, and biological changes over many years. This chapter describes the model systems and associated research facilities and illustrates how LEO allows for tracking of multiscale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and soil coring data are already providing insights into the tight linkages between water flow, weathering, and microbial community development. These interacting processes are anticipated to drive the model systems to increasingly complex states and will be impacted by the introduction of vascular plants and changes in climatic regimes over the years to come. By intensively monitoring the evolutionary trajectory, integrating data with mathematical models, and fostering community-wide collaborations, we envision that emergent landscape structures and functions can be linked, and significant progress can be made toward predicting the coupled hydro-biogeochemical and ecological responses to global change

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore