1,850 research outputs found
Recommended from our members
Investigation of optimal parameters for finite element solution of the forward problem in magnetic field tomography based on magnetoencephalography
This paper presents an investigation of optimal parameters for finite element (FE) solution of the forward problem in magnetic field tomography (MFT) brain imaging based on magnetoencephalography (MEG). It highlights detailed analyses of the main parameters involved and evaluates their optimal values for various cases of FE model solutions (e.g., steady-state, transient, etc.). In each case, a detail study of some of the main parameters and their effects on FE solution and its accuracy are carefully tested and evaluated. These parameters include: total number and size of 3D FE elements used, number and size of elements used in surface discretisation (of both white and grey matters of the brain), number and size of elements used for approximation of current sources, number of anisotropic properties used in steady-state and transient solutions, and the time steps used in transient analyses. The optimal values of these parameters in relation to solution accuracy and mesh convergence criteria have been found and presented
Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control
This paper presents a new hybrid active & semi-active control method
for vibration suppression in flexible structures. The method uses a combination of a
semi-active device and an active control actuator situated elsewhere in the structure
to suppress vibrations. The key novelty is to use the hybrid controller to enable
the magneto-rheological damper to achieve a performance as close to a fully active
device as possible. This is achieved by ensuring that the active actuator can assist
the magneto-rheological damper in the regions where energy is required. In addition,
the hybrid active & semi-active controller is designed to minimize the switching of the
semi-active controller. The control framework used is the immersion and invariance
control technique in combination with sliding mode control. A two degree-of-freedom
system with lightly damped resonances is used as an example system. Both numerical
and experimental results are generated for this system, and then compared as part
of a validation study. The experimental system uses hardware-in-the-loop to simulate
the effect of both the degrees-of-freedom. The results show that the concept is viable
both numerically and experimentally, and improved vibration suppression results can
be obtained for the magneto-rheological damper that approach the performance of an
active device
Recommended from our members
Non-invasive measurement of cholesterol in human blood by impedance technique: an investigation by 2D finite element field modelling
This paper concerns detection of solid particles suspended in conductive media by impedance technique. The technique is based on changes in impedance measured between two electrodes placed across a given volume of conducting medium. It presents a methodology for modelling and investigation of the feasibility of such a technique for particle detection by 2D finite element (FE) field modelling. This is based on modelling and computation of electric field distribution between the above electrodes. It establishes the modelling approach, the complexity involved and justifies the need for modelling in 3D to incorporate some of the effects that cannot be taken into account in 2D models. It reports on the modelling investigation for a specific case of detecting, by impedance technique cholesterol particles suspended in human blood and points to a possible instrument for non-invasive measurement of blood cholesterol level
Survival Impact of Primary Tumor Resection in De Novo Metastatic Breast Cancer Patients (GEICAM/El Alamo Registry)
The debate about surgical resection of primary tumor (PT) in de novo metastatic breast cancer (MBC) patients persists. We explored this approach's outcomes in patients included in a retrospective registry, named El Ălamo, of breast cancer patients diagnosed in Spain (1990-2001). In this analysis we only included de novo MBC patients, 1415 of whom met the study's criteria. Descriptive, Kaplan-Meier and Cox regression analyses were carried out. Median age was 63.1 years, 49.2% of patients had single-organ metastasis (skin/soft tissue [16.3%], bone [33.8%], or viscera [48.3%]). PT surgery (S) was performed in 44.5% of the cases. S-group patients were younger, had smaller tumors, higher prevalence of bone and oligometastatic disease, and lower prevalence of visceral involvement. With a median follow-up of 23.3 months, overall survival (OS) was 39.6 versus 22.4 months (HR = 0.59, p < 0.0001) in the S- and non-S groups, respectively. The S-group OS benefit remained statistically and clinically significant regardless of metastatic location, histological type, histological grade, hormone receptor status and tumor size. PT surgery (versus no surgery) was associated with an OS benefit suggesting that loco-regional PT control may be considered in selected MBC patients. Data from randomized controlled trials are of utmost importance to confirm these results
Exchange bias effect in alloys and compounds
The phenomenology of exchange bias effects observed in structurally
single-phase alloys and compounds but composed of a variety of coexisting
magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic,
spin-glass, cluster-glass and disordered magnetic states are reviewed. The
investigations on exchange bias effects are discussed in diverse types of
alloys and compounds where qualitative and quantitative aspects of magnetism
are focused based on macroscopic experimental tools such as magnetization and
magnetoresistance measurements. Here, we focus on improvement of fundamental
issues of the exchange bias effects rather than on their technological
importance
Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed
Nonlinear interactions in the thalamocortical loop in essential tremor: A model-based frequency domain analysis.
There is increasing evidence to suggest that essential tremor has a central origin. Different structures appear to be part of the central tremorogenic network, including the motor cortex, the thalamus and the cerebellum. Some studies using electroencephalogram (EEG) and magnetoencephalography (MEG) show linear association in the tremor frequency between the motor cortex and the contralateral tremor electromyography (EMG). Additionally, high thalamomuscular coherence is found with the use of thalamic local field potential (LFP) recordings and tremulous EMG in patients undergoing surgery for deep brain stimulation (DBS). Despite a well-established reciprocal anatomical connection between the thalamus and cortex, the functional association between the two structures during "tremor-on" periods remains elusive. Thalamic (Vim) LFPs, ipsilateral scalp EEG from the sensorimotor cortex and contralateral tremor arm EMG recordings were obtained from two patients with essential tremor who had undergone successful surgery for DBS. Coherence analysis shows a strong linear association between thalamic LFPs and contralateral tremor EMG, but the relationship between the EEG and the thalamus is much less clear. These measurements were then analyzed by constructing a novel parametric nonlinear autoregressive with exogenous input (NARX) model. This new approach uncovered two distinct and not overlapping frequency "channels" of communication between Vim thalamus and the ipsilateral motor cortex, defining robustly "tremor-on" versus "tremor-off" states. The associated estimated nonlinear time lags also showed non-overlapping values between the two states, with longer corticothalamic lags (exceeding 50ms) in the tremor active state, suggesting involvement of an indirect multisynaptic loop. The results reveal the importance of the nonlinear interactions between cortical and subcortical areas in the central motor network of essential tremor. This work is important because it demonstrates for the first time that in essential tremor the functional interrelationships between the cortex and thalamus should not be sought exclusively within individual frequencies but more importantly between cross-frequency nonlinear interactions. Should our results be successfully reproduced on a bigger cohort of patients with essential tremor, our approach could be used to create an on-demand closed-loop DBS device, able to automatically activate when the tremor is on
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
- âŚ