51 research outputs found

    Energy dependence of polymer gels in the orthovoltage energy range

    Get PDF
    Purpose: Ortho-voltage energies are often used for treatment of patients’ superficial lesions, and also for small- animal irradiations. Polymer-Gel dosimeters such as MAGAT (Methacrylic acid Gel and THPC) are finding increasing use for 3-dimensional verification of radiation doses in a given treatment geometry. For mega-voltage beams, energy dependence of MAGAT has been quoted as nearly energy-independent. In the kilo-voltage range, there is hardly any literature to shade light on its energy dependence.Methods: MAGAT was used to measure depth-dose for 250 kVp beam. Comparison with ion-chamber data showed a discrepancy increasing significantly with depth. An over-response as much as 25% was observed at a depth of 6 cm.Results and Conclusion: Investigation concluded that 6 cm water in the beam resulted in a half-value-layer (HVL) change from 1.05 to 1.32 mm Cu. This amounts to an effective-energy change from 81.3 to 89.5 keV. Response measurements of MAGAT at these two energies explained the observed discrepancy in depth-dose measurements. Dose-calibration curves of MAGAT for (i) 250 kVp beam, and (ii) 250 kVp beam through 6 cm of water column are presented showing significant energy dependence.-------------------Cite this article as: Roed Y, Tailor R, Pinksy L, Ibbott G. Energy dependence of polymer gels in the orthovoltage energy range. Int J Cancer Ther Oncol 2014; 2(2):020232. DOI: 10.14319/ijcto.0202.32

    Differentiation of primate primordial germ cell-like cells following transplantation into the adult gonadal niche.

    Get PDF
    A major challenge in stem cell differentiation is the availability of bioassays to prove cell types generated in vitro are equivalent to cells in vivo. In the mouse, differentiation of primordial germ cell-like cells (PGCLCs) from pluripotent cells was validated by transplantation, leading to the generation of spermatogenesis and to the birth of offspring. Here we report the use of xenotransplantation (monkey to mouse) and homologous transplantation (monkey to monkey) to validate our in vitro protocol for differentiating male rhesus (r) macaque PGCLCs (rPGCLCs) from induced pluripotent stem cells (riPSCs). Specifically, transplantation of aggregates containing rPGCLCs into mouse and nonhuman primate testicles overcomes a major bottleneck in rPGCLC differentiation. These findings suggest that immature rPGCLCs once transplanted into an adult gonadal niche commit to differentiate towards late rPGCs that initiate epigenetic reprogramming but do not complete the conversion into ENO2-positive spermatogonia

    Dosimetric comparison among different head and neck radiotherapy techniques using PRESAGE® dosimeter

    Get PDF
    Purpose: The purpose of this analysis was to investigate dose distribution of Three Dimensional Conformal Radiation Therapy (3DCRT), Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) for Head and Neck cancer using 3-dimensional PRESAGE® dosimeter. Method: Computer Tomography (CT) scans of Radiological Physics Center (RPC) Head and Neck anthropomorphic phantom with both RPC standard insert and PRESAGE® insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the pinnacle treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having Thermoluminescent detectors (TLD) and film dosimeters and then again containing the PRESAGE® insert having three dimensional dosimeter (PRESAGE®) by using a Varian True beam linear accelerator. After irradiation, the standard insert including point dose measurement (TLD) and planner GafChromic® EBT film measurement was read using RPC standard procedure. The 3D dose distribution from PRESAGE® was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organ-at-risk (OARs) were calculated and compared among each Head and Neck technique. The prescription dose was same for all Head and Neck radiotherapy techniques which was 6.60 Gy per friction. Beam profile comparison and gamma analysis were used to quantify agreement among film measurement, PRESAGE® measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximal doses to organ at risk (spinal cord and parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using TLD system. 2D gamma 5%/3 mm criteria of Pinnacle vs. EBT2 film 3DCRT (92.34%), IMRT (92.3%) and VMAT (96.63%) in axial plan respectively. It was also found that agreement between PRESAGE® and pinnacle along the axial, sagittal and coronal plans VMAT agreement was better than IMRT and 3DCRTplan excludes a 7 mm rim at the edge of the dosimeter using 2D gamma map criteria (±5%/3 mm) with 5% threshold dose. Profile showed good agreement for all plans between film, PRESAGE® and pinnacle. 3D gamma was performed for planning target volume (PTV) and organ at risks (OARs) VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organ at risk and better PTV coverage. TLD, EBT film and PRESAGE® dosimeter has suggested that VMAT would be superior modality for the treatment of Head and Neck cancer than IMRT and 3DCRT

    Radiation Induces Acute Alterations in Neuronal Function

    Get PDF
    Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Energy dependence of polymer gels in the orthovoltage energy range

    No full text
    Purpose: Ortho-voltage energies are often used for treatment of patients’ superficial lesions, and also for small- animal irradiations. Polymer-Gel dosimeters such as MAGAT (Methacrylic acid Gel and THPC) are finding increasing use for 3-dimensional verification of radiation doses in a given treatment geometry. For mega-voltage beams, energy dependence of MAGAT has been quoted as nearly energy-independent. In the kilo-voltage range, there is hardly any literature to shade light on its energy dependence.Methods: MAGAT was used to measure depth-dose for 250 kVp beam. Comparison with ion-chamber data showed a discrepancy increasing significantly with depth. An over-response as much as 25% was observed at a depth of 6 cm.Results and Conclusion: Investigation concluded that 6 cm water in the beam resulted in a half-value-layer (HVL) change from 1.05 to 1.32 mm Cu. This amounts to an effective-energy change from 81.3 to 89.5 keV. Response measurements of MAGAT at these two energies explained the observed discrepancy in depth-dose measurements. Dose-calibration curves of MAGAT for (i) 250 kVp beam, and (ii) 250 kVp beam through 6 cm of water column are presented showing significant energy dependence.-------------------Cite this article as: Roed Y, Tailor R, Pinksy L, Ibbott G. Energy dependence of polymer gels in the orthovoltage energy range. Int J Cancer Ther Oncol 2014; 2(2):020232. DOI: 10.14319/ijcto.0202.32 </p

    Interaction between vascularized lymph node transfer and recipient lymphatics after lymph node dissection - A pilot study in a canine model

    No full text
    Background: Vascularized lymph node transfer (VLNT) has become more widespread for surgical treatment of lymphedema. However, interaction between a transferred lymph node and the recipient lymphatic system in relieving lymphedema has not been identified. The aims of this study were to investigate anatomic changes in the lymphatic system in the forelimb of a canine after lymph node dissection and irradiation and to clarify the interaction between the transferred lymph node and recipient lymphatics. Materials and methods: Two adult female mongrel canines were used for this exploratory study. The unilateral axillary and lower neck node dissections were performed, and 15-Gy irradiation was applied on postoperative day 3. After 1 y, a VLNT flap was harvested from the lower abdominal region and inset in the axilla with vascular anastomoses. The girth of each forelimb was determined with a tape measure at different time points. Indocyanine green fluorescence lymphography and lymphangiography were performed before and after each surgery to evaluate morphologic changes in the lymphatics. Results Both canines revealed identical changes in the lymphatic system, but only one canine developed lymphedema. After lymph node dissection, a collateral lymphatic pathway formed a connection to the contralateral cervical node. After VLNT, an additional collateral pathway formed a connection to the internal mammary node via the transferred node in the axilla. Conclusions: The findings suggest that the lymphatic system has a homing mechanism, which allows the severed lymphatic vessels to detect and connect to adjacent lymph nodes. VLNT may create new collateral pathways to relieve lymphedema.10 page(s
    corecore