126 research outputs found

    RNA binding proteins in cancer chemotherapeutic drug resistance

    Get PDF
    Drug resistance has been a major obstacle in the quest for a cancer cure. Many chemotherapeutic treatments fail to overcome chemoresistance, resulting in tumor remission. The exact process that leads to drug resistance in many cancers has not been fully explored or understood. However, the discovery of RNA binding proteins (RBPs) has provided insight into various pathways and post-transcriptional gene modifications involved in drug tolerance. RBPs are evolutionarily conserved proteins, and their abnormal gene expression has been associated with cancer progression. Additionally, RBPs are aberrantly expressed in numerous neoplasms. RBPs have also been implicated in maintaining cancer stemness, epithelial-to-mesenchymal transition, and other processes. In this review, we aim to provide an overview of RBP-mediated mechanisms of drug resistance and their implications in cancer malignancy. We discuss in detail the role of major RBPs and their correlation with noncoding RNAs (ncRNAs) that are associated with the inhibition of chemosensitivity. Understanding and exploring the pathways of RBP-mediated chemoresistance will contribute to the development of improved cancer diagnosis and treatment strategies

    Cell-free Embryonic Stem Cell Extract-mediated Derivation of Multi-potent Stem Cells from NIH3T3 Fibroblasts for Functional and Anatomical Ischemic Tissue Repair

    Get PDF
    The oocyte-independent generation of multipotent stem cells is one of the goals in regenerative medicine. We report that upon exposure to mouse ES cell (ESC) extracts, reversibly permeabilized NIH3T3 cells undergo de-differentiation followed by stimulus-induced re-differentiation into multiple lineage cell types. Genome-wide expression profiling revealed significant differences between NIH3T3 and ESC-extract treated NIH3T3 cells including re-activation of ESC specific transcripts. Epigenetically, ESC extracts induced CpG de-methylation of Oct4 promoter, hyper-acetylation of histones 3 and 4 and decreased lysine 9 (K-9) dimethylation of histone 3. In mouse models of surgically-induced hind limb ischemia (HLI) or acute myocardial infarction (AMI) transplantation of reprogrammed NIH3T3 cells significantly improved post-injury physiological functions and showed antomical evidence of engraftment and trans-differentiation into skeletal muscle, endothelial cell and cardiomyocytes. These data provide evidence for the generation of functional multi-potent stem like cells from terminally differentiated somatic cells without the introduction of trans-genes or ESC fusion

    Improvement of Cardiac Function in Mouse Myocardial Infarction after Transplantation of Epigenetically-Modified Bone Marrow Progenitor Cells

    Get PDF
    OBJECTIVE: To study usefulness of bone marrow progenitor cells (BPCs) epigenetically altered by chromatin modifying agents in mediating heart repair after myocardial infarction in mice. METHODS AND RESULTS: We tested the therapeutic efficacy of bone marrow progenitor cells treated with the clinically-used chromatin modifying agents Trichostatin A (TSA, histone deacetylase inhibitor) and 5Aza-2-deoxycytidine (Aza, DNA methylation inhibitor) in a mouse model of acute myocardial infarction (AMI). Treatment of BPCs with Aza and TSA induced expression of pluripotent genes Oct4, Nanog, Sox2, and thereafter culturing these cells in defined cardiac myocyte-conditioned medium resulted in their differentiation into cardiomyocyte progenitors and subsequently into cardiac myocytes. Their transition was deduced by expression of repertoire of markers: Nkx2.5, GATA4, cardiotroponin T, cardiotroponin I, α-sarcomeric actinin, Mef2c and MHC-α. We observed that the modified BPCs had greater AceH3K9 expression and reduced histone deacetylase1 (HDAC1) and lysine-specific demethylase1 (LSD1) expression compared to untreated BPCs, characteristic of epigenetic changes. Intra-myocardial injection of modified BPCs after AMI in mice significantly improved left ventricular function. These changes were ascribed to differentiation of the injected cells into cardiomyocytes and endothelial cells. CONCLUSION: Treatment of BPCs with Aza and TSA converts BPCs into multipotent cells, which can then be differentiated into myocyte progenitors. Transplantation of these modified progenitor cells into infarcted mouse hearts improved left ventricular function secondary to differentiation of cells in the niche into myocytes and endothelial cells

    Modeling Stem Cell Induction Processes

    Get PDF
    Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize regenerative medicine. However, the production of these so called iPS cells is still quite inefficient and may be dominated by stochastic effects. In this work we build mass-action models of the core regulatory elements controlling stem cell induction and maintenance. The models include not only the network of transcription factors NANOG, OCT4, SOX2, but also important epigenetic regulatory features of DNA methylation and histone modification. We show that the network topology reported in the literature is consistent with the observed experimental behavior of bistability and inducibility. Based on simulations of stem cell generation protocols, and in particular focusing on changes in epigenetic cellular states, we show that cooperative and independent reaction mechanisms have experimentally identifiable differences in the dynamics of reprogramming, and we analyze such differences and their biological basis. It had been argued that stochastic and elite models of stem cell generation represent distinct fundamental mechanisms. Work presented here suggests an alternative possibility that they represent differences in the amount of information we have about the distribution of cellular states before and during reprogramming protocols. We show further that unpredictability and variation in reprogramming decreases as the cell progresses along the induction process, and that identifiable groups of cells with elite-seeming behavior can come about by a stochastic process. Finally we show how different mechanisms and kinetic properties impact the prospects of improving the efficiency of iPS cell generation protocols.Fundação para a Ciência e a Tecnologia (BD 42942)MIT-Portugal ProgramNational Institutes of Health (U.S.) (CA112967)Singapore–MIT Alliance for Research and TechnologyIntel Corporatio

    Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice

    Get PDF
    The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice. © 2013 Mu et al

    Curcumin―The Paradigm of a Multi-Target Natural Compound with Applications in Cancer Prevention and Treatment

    Get PDF
    As cancer is a multifactor disease, it may require treatment with compounds able to target multiple intracellular components. We summarize here how curcumin is able to modulate many components of intracellular signaling pathways implicated in inflammation, cell proliferation and invasion and to induce genetic modulations eventually leading to tumor cell death. Clinical applications of this natural compound were initially limited by its low solubility and bioavailability in both plasma and tissues but combination with adjuvant and delivery vehicles was reported to largely improve bio-availability of curcumin. Moreover, curcumin was reported to act in synergism with several natural compounds or synthetic agents commonly used in chemotherapy. Based on this, curcumin could thus be considered as a good candidate for cancer prevention and treatment when used alone or in combination with other conventional treatments

    A framework for evolutionary systems biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects.</p> <p>Results</p> <p>Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions <it>in silico</it>. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism.</p> <p>Conclusion</p> <p>EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.</p

    Optical-flow based non-invasive analysis of cardiomyocyte contractility

    Get PDF
    Characterization of cardiomyocyte beat patterns is needed for quality control of cells intended for surgical injection as well as to establish phenotypes in disease modeling or toxicity studies. Optical-flow based analysis of videomicroscopic recordings offer a manipulation-free and efficient characterization of contractile cycles, an important characteristics of cardiomyocyte phenotype. We demonstrate that by appropriate computational analysis of optical flow data one can identify distinct contractile centers and distinguish active cell contractility from passive elastic tissue deformations. Our proposed convergence measure correlates with myosin IIa immuno-localization and is capable to resolve contractile waves and their synchronization within maturing, unlabeled induced pluripotent stem cell-derived cardiomyocyte cultures

    Ulnar nerve inoculation of poliovirus in bonnet monkey: a new primate model to investigate neurovirulence

    No full text
    A new monkey model of poliovirus neurovirulence has been developed avoiding the currently used intraspinal injection route which traumatizes the spinal cord. Poliovirus type 1 (0.1 ml) was inoculated into the ulnar nerve of bonnet monkeys (Macaca radiata) at the right elbow. Five monkeys were inoculated with 107 TCID of LSc/2ab (Sabin vaccine strain); none developed any illness. Limb paralaysis, clinically resembling spinal poliomyelitis in children, developed in all four monkeys given &#8805;105 TCID50 of Mahoney strain, and in three of four monkeys given 104 or 103 TCID50. Higher functions and cranial nerves were not affected. Paralysis occurred more frequently in the lower limbs (11 limbs in seven monkeys) than in upper limbs (six limbs in seven monkeys). The incubation period, from inoculation to onset of paralyais, ranged from 5 to 12 days. Further progression of paralysis to other limbs occurred within 2 to 6 days. No illness developed in two monkeys given 102 TCID50 of Mahoney virus. All monkeys given LSc/2ab and those given >102TCID50 Mahoney virus developed humoral antibody response; however, infection of the gastrointestinal tract was detected by virus isolation from throat swabs and stools only in monkeys given Mahoney virus, but not in those given LSc/2ab. Thus, intraneural spread of Mahoney virus to the spinal cord, neurovirulence of Mahoney but not of LSc/2ab and retrograde gastrointestinal infection with Mahoney but not with LSc/2ab are the features of this experimental model
    • …
    corecore