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Optical-flow based non-invasive 
analysis of cardiomyocyte 
contractility
Andras Czirok   1,2, Dona Greta Isai1, Edina Kosa1, Sheeja Rajasingh1, William Kinsey1, Zoltan 
Neufeld3 & Johnson Rajasingh   4

Characterization of cardiomyocyte beat patterns is needed for quality control of cells intended for 
surgical injection as well as to establish phenotypes in disease modeling or toxicity studies. Optical-flow 
based analysis of videomicroscopic recordings offer a manipulation-free and efficient characterization of 
contractile cycles, an important characteristics of cardiomyocyte phenotype. We demonstrate that by 
appropriate computational analysis of optical flow data one can identify distinct contractile centers and 
distinguish active cell contractility from passive elastic tissue deformations. Our proposed convergence 
measure correlates with myosin IIa immuno-localization and is capable to resolve contractile waves and 
their synchronization within maturing, unlabeled induced pluripotent stem cell-derived cardiomyocyte 
cultures.

Heart diseases are the leading cause of death in the United States and around the world1. Hypertension, tobacco 
exposure, high cholesterol, obesity, diabetes, unhealthy diet, alcohol, and aging seem to have an additive effect for 
the causation of cardiac diseases. Unlike other organs, cardiac tissue does not regenerate after injury. Thus, when 
cardiac tissue is damaged by obstruction to the blood supply, it forms a scar. Scar tissue is not functional, and if 
it occupies large part of the myocardium, the heart is unable to supply the metabolic needs of the human body. 
Currently, 5.7 million Americans are living with heart failure, and about 10% have advanced heart failure2. Since 
donor hearts are in short supply, cardiac repair with cell therapy has emerged as a promising treatment alternative 
in this patient population. Successful generation of induced pluripotent stem cells (iPSCs) and their differentia-
tion into cardiomyocytes have created exciting possibilities3–5, to repair damaged myocardium.

Medical-grade, induced pluripotent stem cell (iPSC)-derived cardiomyocytes are promising both as 
implants to improve cardiac function and also as tools to model cardiac diseases. Myocardial tissue repair using 
iPSC-derived cardiomyocytes, reprogrammed from a patient’s somatic cells by mechanisms analogous to those 
taking place during embryonic development, is a particularly promising avenue for future treatment of cardiac 
diseases. Recently, we have formulated a combinatorial, safe, animal-free and viral-free approach using DNA 
and RNA pluripotent factors that can reprogram a wide range of adult human cells into iPSCs–with subsequent 
differentiation into functional cardiomyocytes6.

Recent studies have shown that iPSC-derived cardiomyocytes yield an adult phenotype through a maturation 
process7, 8. While these studies were primarily focused on electrophysiological end-points, the most important 
characteristic of a cardiomyocyte, however, is its ability to contract. Thus, quantifying contractility is essential for 
measuring the functionality of cardiomyocytes. Unlike most current technologies, optical flow-based (particle 
image velocimetry, PIV) methods6, 9–11 are capable of monitoring cardiomyocyte contractile function without 
physical or biochemical manipulations, hence without compromising cell quality.

By considering the mechanics of an elastic plate with an embedded contractile center, we propose novel 
image-processing tools to monitor and evaluate the contractility of reprogrammed, iPSC-derived cardiomyocytes 
in high cell density culture conditions. With the help of these computational tools, we are able to discriminate 
actively contracting cell clusters from cells undergoing passive, elastic deformation. We demonstrate that our 
contractility measure identifies cardiomyocyte clusters with high myosin expression, and it can track culture 
maturation by determining the extent of spatial synchronization.
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Results
Optical flow-based displacement analysis.  To characterize cardiomyocyte function, we first apply our 
non-invasive, optical flow-based method to iPSC-derived cardiomyocyte cultures6 (Fig. 1a). Velocity graphs typ-
ically show a sequence of doublet peaks (Fig. 1b). Peaks indicating faster movement are associated with con-
traction and are followed by broader peaks corresponding to relaxation. Displacements, calculated relative to 
appropriate reference images, provide a signal that is simpler and less noisy than velocity graphs are. Such beat 
patterns thus represent myocardial contractile cycles with the rising and dropping impulse edges correspond-
ing to contraction and relaxation, respectively. While contraction is usually swift, relaxation is slower and well 
approximated by an exponential function (Fig. 1c).

We compared the optical flow-derived beat patterns with data obtained by a more conventional method, 
Ca++ imaging. Periodic Ca++ waves were visualized in iPSC-derived cardiomyocyte cultures by scanning con-
focal microscopy. The corresponding brightfield images, recorded by the auxiliary CCD camera of the confocal 
microscope, were analyzed by our optical flow software. The localization of Ca++ activity closely corresponds to 
the area where myocardial movements are detectable. Moreover, the temporal beat patterns obtained either from 
fluorescence intensity or from displacement magnitudes are highly similar (Fig. 2). Thus, our optical flow-based 
analysis is a reasonable non-invasive substitute for the more expensive and labor intensive traditional method to 
evaluate cardiomyocyte beat phenotypes.

Mechanics of a contractile cell layer.  While beat patterns are useful to represent the beating activity of a 
single contractile center within a microscopic field of view, they have limited utility to locate contractile centers 
or to characterize multiple contractile foci within the same microscopic field. High cell density cultures are a 
mechanical continuum, hence forces exerted at a certain location can deform and move distant cells. To deduct 
active cell contractility from the observed spatial distribution of displacement vectors, we consider the mechanics 
of a cardiomyocyte layer that undergoes elastic deformations driven by internal active cell contractility.

While cardiomyocytes are attached to a rigid culture substrate, the observed beat patterns indicate that the 
monolayer can deform sufficiently to accommodate even relatively large cell displacements. We thus envision that 
either (i) the cytosol of each cardiomyocyte can accommodate substantial shear between the basal cell cortex and 
the rest of the cell body, or (ii) cardiomyocytes participating in periodic contractile behavior lose their adhesion 

Figure 1.  Beating cardiomyocytes, visualized by optical flow analysis of videomicroscopic images. (a) Optical 
flow-derived displacement vectors, superimposed on the corresponding bright field image of cardiomyocytes. 
(b) Velocity graph: the average magnitude of displacement vectors, calculated from consecutive image pairs. The 
sequence of double peaks corresponds to sudden contraction and slower, but more prolonged relaxation events. 
(c) The displacement graph (beat pattern) is calculated by comparing each image to an appropriate reference 
image.

Figure 2.  Comparison of an optical flow-derived beat pattern with Ca++ oscillations. Brightfield (a) and 
corresponding Ca++ (b) image of cardiomyocytes, recorded at a peak of the Ca++ signal. To improve contrast, 
Ca++ sensitive dye fluorescence image was inverted, thus darker areas indicate higher Ca++ concentration. Beat 
patterns (c) were obtained from optical flow analysis, and show a pattern similar to that of the Ca++ -dependent 
total fluorescence (d). Recording framerate: 1/s, field of view: 140 μm.
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to the underlying rigid substrate. In our first, simplest approach, we treat the cardiomyocyte layer as an elastic 
plate, freely moving in two dimensions.

The force balance equation in the absence of external forces

σ σ∇ ⋅ + =⁎( ) 0 (1)

includes the elastic stress σ and the active contractile stress of the cells σ*. Let us consider a single contractile 
center of radius r0 at the origin of a polar coordinate system (r, φ), thus σ* = 0 for r > r0. The elastic displacement 
u in polar coordinates is given by the radial and tangential components ur and uφ, respectively. Since the system is 
rotation invariant, ur = u(r) and uφ = 0. For such a displacement field, the infinitesimal strain tensor
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While the passive elastic response of the myocardium is well described by an anisotropic and viscoelastic con-
stitutive equation12, 13, for simplicity here we consider an isotropic linear elastic membrane. Then the elastic stress 
and the strain tensor is related through Hooke’s law as

ε εσ = + .c c ITr( ) (4)1 2

where c1 and c1 characterize the elasticity of the cardiomyocyte sheet. Thus, for the components of the strain 
tensor σ we obtain
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In the absence of active contractility (σ* = 0 for r > r0), according to Eq. (1) the condition for mechanical 
equilibrium is σ∇ ⋅ = 0. Expressed with polar coordinates,

σ
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Substituting expressions (5–7) into Eq. (8), for u(r) we obtain:
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This is the Cauchy-Euler equidimensional equation. The solution of (9) satisfying the =→∞u rlim ( ) 0r  bound-
ary condition is u(r) = a/r, where a is a constant. Thus, using relations (5–7), the strain tensor in polar coordinates 
is given as
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Calculating the trace of (4) yields

σ ε= + .c cTr Tr( 2 ) ( ) (11)1 2

According to Eqs (10) and (11) εσ = =Tr Tr 0. As ε = ∇ ⋅Tr u, for r > r0 we thus obtain

∇ ⋅ = .u 0 (12)

Conversely, near the contraction center, for r < r0 we assume a uniform active contraction of the cells:

σσ = .⁎
⁎I (13)

The condition for mechanical equilibrium (1) now also yields (8), with the boundary condition u(r) = 0. 
Substituting the corresponding linear solution u(r) = br with a parameter b into Hooke’s law (4) yields

σ = + .b c c I( 2 ) (14)1 2

Substituting into (11) we obtain
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Since contractility implies negative divergence, we denote = −∇ ⋅C u as convergence. By considering (12) 
and (15), we can see that for a freely floating cell sheet the convergence C of the displacement field u is thus a 
measure proportional to σ*, the active contractility of the cells.

A more realistic approach takes into account the elastic shear stress generated between the substrate-attached 
basal cytoskeletal layer and the rest of the cardiomyocyte cell body. Thus, the equation for mechanical equilibrium 
(1) is replaced by

σ σ∇ ⋅ + − =⁎ ku( ) 0 (16)

where k is the “spring constant” of the elastic shear force acting between the cell body and the substrate. For r > r0, 
the equation analogous to (9) becomes
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Scaling the variable by λ = + −c c k( )1 2
1/2 1/2 as ρ = r/λ, the drag coefficient k can be eliminated and (17) is 

transformed into the modified Bessel’s equation
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Equation (18) has two linearly independent solutions. One of them grows, while the other decays exponen-
tially as r → ∞. For r > r0 the suitable solution is the modified Bessel’s function of the second kind, K1(ρ), that 
decays at infinity. The equation for the deformation within the actively contracting core remains (18), but the 
condition u(0) = 0 is satisfied by the modified Bessel’s function of the first kind, I1(ρ). For small values of ρ, i.e. 
close to the center, I1(ρ) increases approximately proportionally with ρ (Fig. 3). The pre-factors of both K1 and I1 
can be determined numerically by matching the displacement at the boundary of the two regions.

Figure 3 illustrates the effect of substrate adhesion on the displacement and convergence in case of a uniformly 
contracting core of size r0 = 1. Without adhesion, the deformation u(r) is proportional to r within the core, then 
decays as 1/r. The convergence of u is proportional to the active contractility, σ*, hence it drops to zero outside of 
the core region. With substrate adhesion the overall relationship between convergence and contractility remains 
similar, but corrections appear. The main correction is that immediately outside of the core region the conver-
gence is negative and this divergent halo becomes more pronounced when the mechanical role of cell-substrate 
adhesion is stronger, i.e. for larger values of k. Displacements of the passive cells in the far field r ≫ λ can be cal-
culated from the asymptotic approximation
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Thus, convergence decays exponentially outside of the contractile zone:
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Still, as Fig. 3 demonstrates, even for large k values localized contractility is identified by positive convergence.

Figure 3.  Deformations of an elastic sheet attached to a rigid substrate and actively contracted within a radius 
of r0 = 1. Radial displacement u(r) (top) and its convergence (negative divergence) = −∇ ⋅C u (bottom) is 
shown for various substrate adhesion strengths k = 0, 1, 5.



www.nature.com/scientificreports/

5Scientific Reports | 7: 10404  | DOI:10.1038/s41598-017-10094-7

In the most general case of spatially non-uniform cell contractility (Fig. 4), we can write the displacement field 
as a convolution of contractility σ* with the appropriate K1 solution of Eq. (18):
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Hence, in general, the convergence is the convolution of the contractility and a response function g
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In Fig. 5 we compare empirically obtained cardiomyocyte convergence and displacements fields with numer-
ical predictions (Fig. 4) obtained using Eqs (21–23). We assumed that cell contractility is distributed according 
to a Gaussian function with radial symmetry around the origin, i.e., there is a gradual transition from actively 
contractile cells to passive cells. Note, that in this case the sharp discontinuity in the convergence seen in Fig. 3 
is replaced by a smooth transition. Nevertheless, the positive convergence within the contractile region is still 
surrounded by a region of negative convergence as a result of the cell-substrate adhesion.

Convergence analysis.  Motivated by the above analysis, we calculated the convergence C from optical flow 
data to identify active contractile centers in iPSC-derived cardiomyocytes. As a numerical derivative, convergence 
is a noisy quantity. The strongest sources of noise are–when present–the cell-free areas within the analyzed micro-
scopic field of view. In such areas the low contrast of the image cannot suppress non-biological movements, like 
debris moving with a convective flow of the medium. As such movements are rather quick, they yield a strong, 
rapidly changing signal in the optical flow analysis. A second source of noise is the slow accumulation of changes 
between the analyzed and the reference image frames. As cells continuously rearrange, relaxed states of the con-
tractility cycles will not match precisely. This background noise increases with the time lag between the analyzed 
and reference frames. To suppress noise from both sources, we apply a (i) spatial median filter, a (ii) temporal 
high-pass filter and (iii) use contrast-weighted convergence values (Fig. 6). The combination of these approaches 
greatly reduces the computational noise and the noise-filtered convergence analysis efficiently identifies contrac-
tion centers. Finally, for simplicity our estimate of (relative) contractility s* is the thresholded convergence:

= = −∇ ⋅ >
.

⁎ {s C Cr r u r r( ) ( ) ( ) for ( ) 0
0 otherwise (24)

To test the biological relevance of our analysis, we compared the results of convergence analysis with the 
distribution of myosin IIa within the same sample. Videomicroscopy recordings of cardiomyocyte cultures were 
followed by fixing the samples and immunostaining them against the myosin II variant found in atrial cells, the 
expected main source of contractile activity in our iPSC-derived cardiomyocyte cultures (Fig. 7). As the fixed and 
live specimen do not overlap precisely, to quantitate the degree of covariance we distributed both the convergence 
maps and the immunofluorescence images into tiles, and measured the total convergence and the total myosin IIa 
immunofluorescence intensity within each tile. The scatter plot of the corresponding convergence and myosin IIa 
values indicate a strong correlation between the two quantities, hence supporting our analysis. (Fig. 7d).

Dynamics of contractile centers.  The proposed computational method allows us to study the formation 
and long-term behavior of beating cardiomyocyte nodes. Typically, early beating centers are not synchronized 
within a single microscopic field of view and beat at distinct frequencies which also frequently change in time 
(Fig. 8a,b). A sequence of convergence maps, calculated from high framerate recordings, can also reveal contrac-
tile waves passing through adjacent contractile centers (Fig. 8c). Within a day, however, cardiomyocyte contrac-
tility becomes synchronized in the entire field of view (Fig. 8c,e), even if contractile centers are separated by a 
barrier of non-beating cells.

Discussion
Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are expected to be useful in direct medical applica-
tions like restoring cardiac function in myocardial infarct patients3–5 or in fatal heart diseases14, 15. iPSC-derived 
cardiomyocytes are also likely to play a role in disease modeling. For most common diseases there are hundreds 
of genetic risk variants–each variant yielding a small change in phenotype. The variability of genotypes in such 
multi-factor diseases currently precludes proper risk evaluation as well as treatments optimized for the individual 
patients16. Phenotypes of iPSC-derived cardiac cells with various genetic backgrounds can be evaluated within an 
artificial tissue environment of varying complexity17, 18. Such experiments are expected to provide molecular dis-
ease mechanisms19, 20 and specific pharmacological intervention targets21–23. An optimal drug treatment regimen 
can be established for a certain individual patient or to treat rare diseases. Finally, iPSC-derived cardiomyocytes 
are also promising candidates for high throughput cardiotoxicity screens24. All these efforts require sensitive 
methods to evaluate cardiomyocyte function–both for quality control, and to establish functional aspects of car-
diomyocyte phenotype.
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Accordingly, several techniques are being used to characterize the most important cardiomyocyte function: 
contractility. Voltage and Ca++ sensitive dyes can reveal the electric and ionic waveforms that drive contractile 
cycles in a large number of cells25, 26. Patch clamping techniques allows detailed investigations, on the individual 
ion channel level, within a small cell population27, 28. Traction force microscopy can probe the forces cardiomyo-
cytes transmit to an elastic substrate29. Cell shape changes associated with contractility can also be detected using 

Figure 4.  Radial profiles of convergence (a) and displacement (b) fields, when cell contractility changes in 
space gradually. Theoretical predictions were calculated by numerical integration of Eq. (21) assuming a 
Gaussian distribution of cell contractility centered at the origin. Convergence closely match local contractility 
for low values of k (blue). For increasing k an area with negative convergence appears at the boundary of the 
contractile region (red, green).

Figure 5.  Experimental convergence (left) and displacement (right) data from iPSC-derived cardiomyocytes. 
The features predicted in Fig. 4 well characterize the radial convergence (a) and displacement (b) profiles, 
obtained by radial averaging of the corresponding convergence (c) and displacement (d) maps. Scale bar: 
150 μm.
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electrical resistance measurements30. Videomicroscopy techniques are especially promising for high throughput 
contractility screens as they are simple, cheap and do not require manipulation of the cells. As the pioneering 
study of Hayakawa et al.31 established, optical-flow based techniques offer a useful estimate for the temporal 
dynamics of cardiomyocyte contractility in vitro. Accordingly, optical-flow has been used in several recent studies 
to characterize contractile cycles6, 9–11, 32. Here we demonstrate that by additional image processing steps, from 
the optical flow data one can obtain a both biologically and mechanically relevant spatial map of cell contractility.

The divergence of a vector field in two dimensions gives the net flux passing through the perimeter of a small 
area. A positive or negative divergence value thus indicates the presence of a source or sink at that position, 
respectively. Thus, contracting tissues display negative divergence, which we termed convergence. Our mechan-
ical analysis gives more rigorous support to this intuitive argument, and identifies important corrections to this 
measure. We explored the feasibility to identify contractile cardiomyocytes as areas with positive convergence. In 
the future, more sophisticated methods may improve the sensitivity of the technique by solving the inverse con-
volution problem of Eqs (22 and 23). Thus, one can determine what is the most likely value of parameter λ and the 
most likely spatial map of cell contractility σ* that is compatible with the experimentally observed convergence 
pattern C. A similar problem arises in traction force microscopy, where various deconvolution techniques have 
been utilized33–35. We expect the same techniques, like blind deconvolution or Wiener filtering, can also be helpful 
to achive higher resolution contractility maps. Better optical resolution would allow the 3D reconstruction of 
both the structure (height variation) of the cell culture and the cytoskeletal movements. Such a high resolution 
optical flow data, with corresponding finite element modelling36 would yield further insights into the mechanics 
of cardiomyocyte maturation.

The imaging technology we use to assay cardiomyocyte differentiation is a major departure from the tra-
ditional readouts which involve sophisticated instruments, and require either electrode clamping, using Ca++ 
-sensitive intracellular dyes or mechanically poking the cells. Each of these techniques is labor-intensive, invasive 
and thus can affect the vitality of the cells and their ability to produce contractile forces. Yet, the most important 
functional property of cardiomyocytes is the ability to produce contractile forces. Therefore, our ability to ana-
lyze and quantify cardiomyocyte contraction from microscopic images–without compromising cell quality–is a 

Figure 6.  Contractility analysis using filtered convergence maps. An optical flow-derived displacement 
(a) and the corresponding contractility (b) field, calculated from frames of in vitro time-lapse imaging of 
cardiomyocytes. Warmer colors correspond to higher displacement or contractility magnitudes, respectively. 
The convergence field (c) is obtained from a time series by spatio-temporal filtering to remove various artifacts 
marked by circles (d). The procedure localizes contraction centers (red), which often do not correspond to 
areas with high displacement values (arrows). Conversely, cell layers often move passively without actively 
contracting (asterisks). Thus, convergence analysis provides information not readily available from velocity or 
displacement data.
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powerful assessment tool to monitor cardiomyocyte maturation. In the future, the behavior of disease-specific 
cardiomyocytes evaluated with this safe, manipulation-free optical method will also enable high-throughput drug 
screening and disease-specific drug discovery.

Methods
Data availability.  The computational codes used in this paper are available at https://github.com/aczirok/
piv-div, together with the appropriate image sequences at http://osf.io/2w63u.

Figure 8.  Synchronization of contractile centers. (a) Convergence analysis identifies distinct contractile 
centers (arrows) within a microscopic field recorded at day in vitro (DIV) 7. (b,c) The temporal activity of each 
contractile center is visualized by beat patterns obtained as the local integral of the convergence field. The color 
of the beat pattern graphs in panels b,c matches the color of the corresponding marker in panel a. At DIV 7 
(panel b), centers marked with the red, green, blue and violet colors beat with the same frequency, but exhibit 
progressively delayed phases. The area identified by black color beats with a higher frequency. Unsynchronized 
contractile centers at DIV 7 (b) become fully synchronous 4 days later (c). (d) Contractile wave propagation 
is resolved at a 10/s frame rate in a DIV 10 cardiomyocyte culture. (e) One day later, the same area exhibits 
synchronous contractility. Scale bar: 150 μm.

Figure 7.  Contractile centers, identified by convergence analysis, co-localize with areas where myosin II 
expression is high. (a) Representative frames from brightfield videomicroscopy recordings, obtained from 
distinct cardiomyocyte cultures. Scale bars: 150 μm. (b) Immunofluorescence localization of atrial Myosin 
IIa (green). (c) Convergence-estimated contractility s* (yellow to red colors), superimposed on brightfield 
micrographs. (d) Scatter plot of myosin IIa immunofluorescence intensity vs convergence-derived contractility 
for non-overlapping image tiles of the two independent samples.

https://github.com/aczirok/piv-div
https://github.com/aczirok/piv-div
http://osf.io/2w63u
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Cardiomyocyte culture.  In a recent report6 we described an efficient method to generate human cardiomy-
ocyte progenitor cells by reprogramming adult somatic cells such as skin fibroblasts. An induced pluripotent cell 
(iPSC) state is achieved by a combined treatment of pluripotent gene (Oct4, Nanog, Sox2 and Lin28) DNA and 
mRNA. The treatment regimen transformed 4fibroblasts into iPSC colonies, a significantly improved efficiency 
compared with use of either DNA or mRNA alone. These iPSC colonies were characterized by their mRNA and 
protein expressions. Human iPSCs were further differentiated into cardiomyocyte lineage in Matrigel coated 
culture dishes in the presence of a GSK inhibitor. Basic FGF was present initially for two days, but was replaced by 
a Wnt inhibitor for the subsequent five days. We observed the beating of cardiomyocytes in culture from day six 
onwards, and more than 85% of cells were positive for cardiotroponin T and Nkx2.5–measured by flow cytometry 
and immuno-staining. For the studies we used iPSC derived cardiomyocytes, after 15–20 days of maturation.

Imaging.  High framerate (10 frames/sec) movies were recorded using a cooled digital CCD camera 
(QImaging Retiga-SRV) mounted on a computer-controlled inverted microscope (Leica DMIRE2), equipped 
with a motorized stage. We used 5x and 10x objectives, both in phase contrast and brightfield modes.

Intracellular free Ca++ was measured in cells plated in dishes with glass-coverslip bottoms (TPG dish, 
ThermoFisher, Waltham, PA) and pre-incubated in medium containing a mixture of 10 μM calcium green-AM 
in 0.4% pluronic F127 (ThermoFisher) for 30 min. Cells were then washed to remove unincorporated calcium 
green, and imaged with a 40X objective of a Nikon TE2000U confocal microscope, fitted with a temperature con-
trolled enclosure maintained at 37 °C. Images were obtained at 1 second intervals with a 488 nm Spectra Physics 
(Mountain View, CA) laser. Emitted fluorescence was recorded with a 515/30 nm band pass filter and transmitted 
light was collected separately to obtain a bright field image.

Optical flow analysis of image pairs.  A motion pattern (velocity field) captured on a pair of images was 
calculated using the method described in refs 37, 38. Briefly, the first image was divided into overlapping square 
tiles, each 64 pixels wide. The displacement of each tile was determined by cross-correlation analysis: the second 
image was scanned pixel-by-pixel, by shifting an equally sized (64 pixels wide) square window for a location 
which exhibits a pattern most similar to the tile within the first image. The scanned area was centered at the posi-
tion of the tile and allowed for 32 pixel displacements in each directions.

The similarity of two image tiles was quantified by the value of their cross correlation: the pixel-by-pixel sum 
of the product h1(x)h2(x) where h1(x) and h2(x) denote the brightness of corresponding pixel x within the original 
tile of the first image and within the window positioned on the second image, respectively. The most similar tile 
on the second image was then assumed to be the location to where the pattern in the first image moved to.

The displacement vectors characterizing each image tile were then interpolated and de-noised by a thin-plate 
spline fit, yielding our coarse displacement field. The coarse estimate was used to construct a second, higher 
resolution displacement field. In this second step, the cross-correlation search for pattern similarity was repeated 
with tiles that were only 32 pixels wide but in a much smaller search area allowing only for 4 pixel displacements 
around the location predicted by the coarse displacement field.

Velocity field.  To characterize the beating activity of cardiomyocytes, we analyzed 30 or 60 sec long video 
recordings. Each consecutive frame pair was subjected to optical flow analysis. The resulting vector field v(t, x) 
characterizes the average cell movement (speed and directionality) near pixel x at time t. For each time point t, the 
average motility V(t) was calculated as the spatial average of the speed magnitudes |v(t, x)| as

= .V t v t x( ) ( , ) (25)x

Finding consecutive minima and maxima of a noisy signal.  We assign an alternating sequence of 
minima tk

min and maxima tk
max to a signal a(t), such that for each k

< < +t t t (26)k
min

k
max

k
min

1

holds. The procedure filters out noisy extrema by requiring that a t( )k
max  is the absolute maximum between tk

min and 
+tk

min
1, and < − ∆+a t a t( ) ( )k

min
k
max

1 , where Δ is a suitably chosen threshold. Similarly, we require that a t( )k
min  is the 

absolute minimum in the interval −t t( , )k
max

k
max

1 , and > + ∆−a t a t( ) ( )k
max

k
min

1 .

Beat patterns.  Based on the average motility data, V(t), we determine a reference frame, which is a frame 
between two contraction cycles, where movement is minimal. Thus, the reference frame t = t* is a minimum of 
V(t).

Next, we perform optical flow analysis between each frame t and the reference frame t* yielding displacement 
vectors ⁎u x t( , )t . These displacement vectors estimate for each image frame t and location x the total movement 
(magnitude and directionality) relative to a resting (contraction-free) state. Similar to the average motility V(t), 
for each time point t the average displacement ⁎U t( )t  was calculated as the spatial average of the displacement 
magnitudes as

= .⁎ ⁎U t u t x( ) ( , ) (27)t t x

We define the beat pattern U(t) as a signal synthesized using a sequence of optimal frames as references as
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=U t U t( ) min ( ), (28)k
tk

min

where the sequence tk
min were obtained as the minima of the ⁎U t( )t  signal. To reduce the computational load, uT(t, 

x) is often approximated as

≈ − .⁎ ⁎u t x u t x u T x( , ) ( , ) ( , ) (29)T t t

Our ability to resolve beat patterns is limited by the imaging frame rate. For frequencies higher than 120 bpm 
the 10 frame/sec image capture rate becomes inadequate. Beating frequency is established by assigning minima 
and maxima to the U(t) beat pattern, and calculating the mean period length between consecutive maxima.

Convergence analysis.  The optical flow-based method does not distinguish between active contractility 
and the passive, elastic response of the adjacent cell layer. To identify contractile centers, we estimated the conver-
gence of the displacement field as its negative divergence:

= −∇ ⋅ = −





∂
∂

+
∂

∂






≈
− − +

+
− − +

C t t u
x

u
y

u x d y t u x d y t
d

u x y d t u x y d t
d

r u r( , ) ( , )

( , , ) ( , , )
2

( , , ) ( , , )
2

,
(30)

x y

x x y y

where d is the resolution of the optical flow-derived grid.

Noise reduction.  Median filter.  Local convergence data at each grid point was replaced by the median 
of the values taken from adjacent grid points. This nonlinear operation reduces noise while preserves spatial 
gradients39.

High-pass filter.  A high pass filter, which attenuates low-frequency signal components, is ideal to remove the 
effects of the slow, cumulative changes in the non-contractile configuration while preserving the details of the 
much faster contraction-relaxation cycles. At each grid point r we thus replace the convergence C(r, t) with the 
filtered values C′(r, t) as

′ = ′ − + − − + −C t q C t C t C t q Mr r r r r( , ) [ ( , 1) ( , ) ( , 1)] (1 ) ( ), (31)

where 0 < q < 1 is a parameter controlling the cut-off frequency of the filter, and M(r) is the average of the unfil-
tered sequence C(r, t). The filter (31) thus maintains the average of a stationary sequence C(r, t).

Local contrast weighting.  Areas devoid of cells can contribute noise to the optical flow analysis. As their image 
contrast is low, the optical flow algorithm easily picks up spurious correlations, or tracks debris floating with the 
medium. These effects can be suppressed by weighting the convergence data C(r, t) with the local image contrast 
w(r, t) as

′ =C t C t w tr r r( , ) ( , ) ( , ) (32)

where 0 ≥ w ≥ 1 is the local standard deviation of image brightness, calculated within a 16 × 16 pixel area, as 
described in ref. 40.
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