
Regeneration of Soft Tissues Is Promoted by MMP1
Treatment after Digit Amputation in Mice
Xiaodong Mu1,2, Ian Bellayr1,3, Haiying Pan4,5, Yohan Choi4,5, Yong Li4,5*

1 The Laboratory of Molecular Pathology, Stem Cell Research Center, Children’s Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America, 2 Department of

Orthopaedic Surgery, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania, United States of America, 3 Department of Bioengineering, University of

Pittsburgh, Pennsylvania, United States of America, 4 Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, United States of

America, 5 Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America

Abstract

The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues
strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and
scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and
even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes
tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and
mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies
have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix
(ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits
amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the
regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the
elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells,
capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less
fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in
amputated digits of adult mice.
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Introduction

MMPs are activated during the wound healing process and are

important regulators of ECM remodeling and tissue regeneration

[1–4]. The ratio of MMPs/TIMPs is suggested to be a critical

determinant of the transition from scarless healing to wound

healing with scars, and the higher ratio of MMP to TIMP

expression could be associated with scarless healing in amphibians

and fetal mammals [5–10]. For example, it has been reported that

skin wound healing of fetal rats transits from scarless repair to

scarring repair between days 16.5 (E16) and 18.5 (E18) of

gestation, with scarless wounds having greater MMP (i.e., MMP1,

MMP2 and MMP14) relative to TIMP (i.e., TIMP-1 and TIMP-3)

expression than scarring wounds [5]. Similarly, a greater MMP to

TIMP ratio of MMP2 and MMP9 was detected in the MRL/MpJ

strain of mice, in which through-and-through ear hole punches are

able to heal without the formation of scars within a few weeks [11].

MMP1 expression is suggested to be controlled by cell-collagen

interactions [12,13], and presumably aids the migration of tissue

progenitor cells by degrading type I and III collagen at the site of

injury [4,12]. Recent studies performed both in vitro and in vivo

have shown the beneficial impact of MMP1 administration on

muscle healing [14–17]. For example, MMP1 treatment of muscle

cells in vitro was shown to increase the migration and myogenic

differentiation capacities of the cells [10,14]; transplantation of

C2C12 myoblasts in combination with MMP1 into skeletal muscle

of MDX/SCID mice, or injection of MMP1 alone to a site of

injury showed improved cell migration and increased myofiber

formation, as well as reduced fibrotic tissue formation [14].

The regeneration of digit tips, the digit, and even the whole limb

has been intensively studied in the field of regenerative medicine.

For newts or fetal mice, the amputated limbs or digit tips were

observed to fully regenerate, which does not normally occur in

mammalian wound healing [18,19]. MMPs have been found to be

up-regulated very early after digit or limb amputation and are

required for this regeneration process [20,21]. The healing of a

wound or wound closure is the first step in digit or limb

regeneration [21]. It was proposed that MMPs contribute to the

digit or limb regeneration by promoting ECM degradation and

the formation of the wound epidermis, which is formed by the

migration of epidermal cells to the perimeter of the amputation

surface and is necessary for wound closure [18,20,21].

Although numerous studies have shown that amputation of a

digit tip distal to the mid-third phalanx resulted in almost complete

regeneration, amputation proximal to this region does not support

regeneration without assistance from exogenous factors. Due to

the numerous beneficial effects of MMP1, we proposed to

investigate the effect of MMP1 treatment in improving the wound
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healing process and reducing scar formation, e.g. scarless healing,

after digit amputation. In this study, the middle digits of both hind

feet of mice were amputated through the mid-second phalanxes

[22,23]. MMP1 was then administrated at the amputated digits

every 4 days after the amputation to observe whether increased

MMP activity can affect the process of wound healing (wound

closure, vascularization, and innervation), digit regeneration and

scar formation in the digits. In this study we found that application

of MMP1 to amputated digits promoted faster wound closure and

regeneration of soft tissues with decreased scar tissue formation.

Materials and Methods

Digit Amputation
This study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the NIH. The protocol was approved by the Institutional

Animal Care and Use Committee (IACUC) of University of

Pittsburgh Medical Center (Protocol 0904641), and the Animal

Welfare Committee of the University of Texas Health Science

Center at Houston (Protocol 12–051). All surgery was performed

under isoflurane anesthesia, and all efforts were made to minimize

suffering. An inbred strain of mice (C57BL/6J, male, 5 weeks of

age, Jackson lab, Bar Harbor, Maine) was used in this study. After

being cleaned with 70% alcohol, the middle digits of both hind feet

of mice were amputated by blades, through the middle phalanx

bones, as shown in Fig. 1A–B&G and Fig. 2A. The wounded

digits in both legs were cleaned with water and treated with

antibiotics to avoid bacterial infection.

MMP1 Administration
Within the first 10 days after amputation, MMP1 was applied

directly to the exposed area of the amputated digit of the left legs

(300 ng of MMP1 in 3 ml of H2O), and injected with a micro-

Figure 1. Process of digit amputation and regeneration. Digits were amputated at the central position of the middle phalanges (A–B, day 0)
(n = 4 for each group). At the early stage of digit regeneration, the wound closure was shown to be faster in MMP1 treated digits (C–D, day 10).
However, during the whole process of digit regeneration, there was no significant difference in the length of the regenerating digits (C–D, day 10; E–
F, day 25). The site of the amputations is demonstrated (G). The lengths of the regenerating digits from day 0 to day 30 after amputation are also
plotted as the percentage of the length of normal digits (H).
doi:10.1371/journal.pone.0059105.g001
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syringe 2–3 mm away from the edge of the severed tip (300 ng of

MMP1 in 3 ml of H2O). From day 10 to day 25 after amputation

(after wound closure), MMP1 was injected only, which was

repeated every 4 days. The amputated digits on the right leg were

administered PBS to serve as a control.

Immunohistochemical Analysis of Tissue Sections
Serial 10-mm cryostat sections of regenerating digits (day 10 and

day 25) were prepared using standard techniques. For immuno-

histochemistry, the slides were fixed with formalin (4%) for 5

minutes, and then blocked with horse serum (10%) for 1 hour.

Primary antibodies used in the study included: CD31 (BD

Biosciences #553370) Utrophin (Santa Cruz #7459), Neural cell

adhesion molecule (NCAM) (Millipore MAB310) and dystrophin

(Abcam #15277 Cambridge, MA) and were applied to the slides

at a 1:200 dilution for 3 hours at room temperature (RT).

Secondary antibodies, IgG (Alexa Fluor 488 or 594; Invitrogen;

1:400), were incubated with sections for 45 minutes at RT.

Negative controls were performed concurrently with all immuno-

histochemical staining. The nuclei of the sections were revealed

using 49,69-diamidino-2-phenylindole dihydrochloride (DAPI).

Fluorescence microscopy (Leica Microsystems Inc., Bannockburn,

IL) was used to examine all of the immunofluorescence results and

capture photographic images.

Trichrome Staining
To detect the amount of fibrosis in the regenerated digits 25

days after amputation, sections of digits were washed in deionized

water and stained with a Masson Modified IMEB Trichrome Stain

Kit (IMEB Inc, San Marcos, California) according to the

manufacturer’s specifications. This technique distinguishes cells

from the surrounding connective tissue, generally staining cells red

and extracellular collagen blue. It was previously validated

through immunohistochemistry as an accurate technique for

evaluating fibrotic tissue within soft tissue [24–26]. Images were

analyzed using Northern Eclipse image analysis software (Empix

Imaging) to measure the percent area of collagen (blue staining

tissue) within the injury zone. Color threshold levels within the

software program were set to isolate the blue staining regions and

calculate the area of that region that corresponded to the area of

fibrosis. This value was expressed as a percentage of the entire

cross-sectional area of the muscle section.

Statistical Analysis
Tissue sections from 4 identically treated mice for each group

were used to generate the data; data pooled for statistical analysis

was analyzed based on 3 to 5 pictures of each level of tissue

sections. Northern Eclipse image analysis software was used for

quantification of all analyses. All of the results are expressed as the

mean 6 standard error (SE). The differences between means were

considered statistically significant if R value ,0.05. The Mann-

Whitney U test was used to compare the differences between

different groups of tissue sections.

Figure 2. MMP1 treatment accelerated wound closure and healing of soft tissue but not the hard tissue. With hematoxylin and eosin
(H&E) staining of tissue sections, soft tissues and bones can be observed in normal digits (A) and regenerating digits 10 days (B&C) or 25 days after
amputation (E&F). MMP1 treated digits showed improved regeneration of soft tissues (faster wound closure) (B–D), but not significant improvement
in the growth or elongation (E–G). N = 4 for each group; *p,0.05 was considered as significant.
doi:10.1371/journal.pone.0059105.g002
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Results

MMP1 Treatment Accelerated Wound Closure and
Healing of Soft Tissue in the Amputated Digits, but does
not Affect the Elongation of the Skeletal Tissue

The middle digits of both hind feet of mice were amputated and

MMP1 was administrated to the digits on the left, with the digits

on the right serving as the controls. The pictures of the digits were

taken on day 0, 10 and 25 after the amputation (Fig. 1A–H). Our

results show that on both 10 days (Fig. 1C–D) and 25 days

(Fig. 1E–F) after amputation, there was no significant difference

in length between MMP1 treated and non-treated groups

(Fig. 1H); however, the results of hematoxylin and eosin (H&E)

staining (Fig. 2) indicated that MMP1 treatment of digit tips

accelerated the soft tissue wound healing compared to non-treated

control digits 10 days after amputation (Fig. 2B–C). Wound

closure of MMP1 treated digits was shown to be almost complete

at day 10, but was incomplete for non-treated digits (Fig. 2B–D).
At 25 days after amputation wound closure was also complete in

the untreated digits; the lengths of treated and untreated digits

continued to show no significant difference at this time point

(Fig. 2E–G). These results indicate that the wound healing of soft

tissues but not the bones was obviously improved with MMP1

administration, suggesting that although MMP1 treatment cannot

fully regenerate an amputated digit to its original size, it did,

however, have a positive impact on the healing of soft tissues of

digits.

Figure 3. MMP1 treatment improved angiogenesis and re-vascularization in the amputated digits. The localization of CD31 and
utrophin proteins in the regenerating digits (A) was compared between MMP1 treated and non-treated digits (B–C, day 10, sections with bone; E–F,
day 10, sections without bone; H–I, day 25, sections with bone). ‘‘*’’ in image A indicates the proximal end of middle phalanx. Arrows (red): CD31
positive blood vessels or capillary vasculature; arrowheads (green): utrophin positive cells; DAPI (blue): present cell nucleus. The level/position of
sections in each comparison is demonstrated (D, G &J). The statistical analysis of CD31 positive signal (K, day10; L, day 25), and utrophin positive
signal (M, day 10) in the amputated digits are also shown. N = 4 for each group; *p,0.05 was considered as significant.
doi:10.1371/journal.pone.0059105.g003
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MMP1 Treatment Generated More CD31 Positive
Capillary Vasculature 10 Days and 25 Days after
Amputation

Angiogenesis or re-vascularization is an important natural

process during wound healing. It was previously shown that

vascular supplies differ in regenerating and non-regenerating

amputated rodent digits [22], and revascularization in the

amputated digit is supposed to be crucial for improved digit

regeneration. Also, an in vitro study showed that MMP1 was able

to promote vascular tube formation on type I collagen, which is

the an important component of ECM [27]. Therefore, we

postulated that our observation of the accelerated healing of soft

tissues may be related with improved revascularization from

MMP1 treatment. To verify this postulation, the deposition of

CD31 protein in the regenerating end of the amputated digits was

analyzed on tissue sections of amputated digits (10 days and 25

days after amputation) (Fig. 3A). CD31 has been identified to be

specifically expressed in capillary vasculature and mature blood

vessels [28]. Our immunohistochemical results showed an

increased density of CD31 positive capillary vasculature at the

regenerating end of MMP1 treated digits, both 10 days (Fig. 3B–
G&K, arrows, red) and 25 days (Fig. 3H–J&L, arrows, red) after

amputation. The improved revascularization of MMP1 treated

digits may contribute to the accelerated wound closure and wound

healing of soft tissues.

In this experiment, utrophin was also co-stained to localize

mature blood vessels (Fig. 3A, arrowheads, green) and skeletal

muscle-related cells [29,30]. Utrophin is also found to be present

in the regenerating muscle [30] and distal region of the developing

digits, including tendons, tendon primordial, and other pre-skeletal

masses [31]. Although there appeared to be a trend of higher

utrophin expression with MMP1 treatment, results at 10 days after

amputation displayed no significant difference in utrophin

deposition between MMP1 treated and untreated digits

(Fig. 3B–G&M, arrowheads, green).

MMP1 Treatment Generated More NCAM Positive
Structure (Peripheral Nerve Fibers and Neuromuscular
Junctions) 25 Days after Amputation

Innervation or nerve regeneration was also found to be crucial

for limb regeneration of salamanders [32], and limb regeneration

occurs only if there is simultaneous nerve regeneration. To

examine the potential effect of MMP1 on nerve regeneration in

the amputated digits of mice, the deposition of NCAM (CD56) was

Figure 4. MMP1 treatment improved nerve regeneration and reduced fibrosis formation in the amputated digits. The localization of
NCAM and dystrophin proteins in regenerating digits was compared between MMP1 treated and non-treated digits at day 25 (A–D). The sub-image
in D shows the cross-section view of the nerve-related structure (D, marked area with red squared line). Arrows: NCAM positive peripheral nerves
(red); arrowheads: NCAM positive nerve-related structure (yellow). Dystrophin expression is shown in green and cell nucleus blue (DAPI). The level/
position of sections in this comparison is demonstrated (E). NCAM expression in the amputated digits was significantly higher in MMP1 treated digits
(F). To compare fibrosis formation in the differentially treated digits, trichrome staining was conducted with tissue sections of non-treated digits (G&I)
and MMP1 treated digits (H&J). The level/position of sections in this comparison is demonstrated (K) and the quantification of fibrotic structure
(collagen deposition in ECM) at day 25 shown (L). N = 4 for each group; *p,0.05 was considered as significant.
doi:10.1371/journal.pone.0059105.g004
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analyzed, which is present in peripheral nerve fibers and

neuromuscular junctions [33,34] and abundantly secreted during

nerve regeneration [35,36]. Dystrophin was co-stained to visualize

the muscle cells in juxtaposition to the neuromuscular junctions

[37–40]. Twenty-five days following digit amputation, MMP1

treated digits contained more NCAM positive structures within the

peripheral nerve fibers and neuromuscular junctions (Fig. 4A–D,

arrowheads, red). Based on this observation, the increase in the

presence of NCAM positive structures in amputated digits that

received MMP1 treatment (Fig. 4F) suggests improvement in

nerve regeneration or neuromuscular junctions, which may aid in

functional recovery.

MMP1 Treatment Generated Reduced Fibrotic Scar Tissue
25 Days after Amputation

The leading complication of tissue regeneration from injuries or

disease has been the formation of fibrotic tissue, which results in an

excessive amount of fibrous connective tissue deposited into the

ECM space of damaged tissues [41–43]. Severely fibrotic tissue

will develop chronic healing problems resulting in tissue/organ

dysfunction. Previously, MMP1 has been shown to effectively

repress fibrosis by digesting collagens types I and III, which are the

main constituents of the fibrotic tissue [16,44]. However, in the

wounded tissues, the collagenase activity of MMP1 is often

repressed by up-regulated cytokines like TGF-b1, a key factor in

the activation of the pro-fibrotic cascade that occurs following the

injuries and diseases [25,43,45–47]. In the regenerating digits, it

was investigated whether MMP1 treatment of the digits form less

fibrotic tissue 25 days after amputation in comparison to non-

treated digits. The results of trichrome staining showed less

deposition of extracellular collagen within MMP1 treated digits 25

days after amputation compared to MMP1 non-treated digits

(Fig. 4G–L). This result indicates the positive effect of MMP1 in

repressing fibrosis formation during digit regeneration.

MMP1 Treatment Increased Sca-1 Positive Progenitor
Cells

Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family and

is expressed on multipotent hematopoietic stems cells as well as

several non-hematopoietic progenitor cells, including myogenic

Figure 5. MMP1 treatment enhanced stem cell population. The localization of Sca-1 expressive cells at 10 days after amputation is compared
between untreated (Aa) and MMP1 treated (Bb) regenerating digits. The number of expression of Sca-1 positive cells was enriched in MMP1 treated
digits compared to non-treated digits, respectively (C). Arrows (red): Sca-1 positive cells; DAPI staining (blue): indicated cells’ nucleus. N = 4 for each
group; *p,0.05 was considered as significant.
doi:10.1371/journal.pone.0059105.g005
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progenitor cells. The localization of Sca-1 positive cells 10 days

after amputation was compared between untreated (Fig. 5Aa) and

MMP1 treated (Fig. 5Bb) regenerating digits. Our results

indicated the expression of Sca-1 positive cells (Fig. 5A–B,
arrows, red) was significantly enriched in MMP1 treated tissues

compared to non-treated digits (Fig. 5C).

Discussion

The natural regeneration of a missing digit in adult mammals

had been considered unachievable because of the modified

immune response, gene expression profile, or mechanisms of

wound healing when compared to digit regeneration in amphib-

ians or fetal mammals. Understanding these different mechanisms

of wound healing will be important for future studies to induce

regeneration of digits and even limbs in adult mammals. MMPs

have been recognized to play critical roles in digit regeneration of

amphibians and fetal mammals, with a higher MMPs/TIMPs

ratio being often observed during the processes [2,3]. In this study,

by applying exogenous MMP1 in the amputated digits of adult

mice, we observed that the elevated ratio of MMPs/TIMPs

improved tissue regeneration of the amputated digits. Our results

demonstrate that wound closure and healing of the soft tissues

were greatly improved in MMP1 treated digits, although the

healing of skeletal tissue and digit elongation was not significantly

improved. MMP1 treatment resulted in the increased formation of

capillary blood vessels, peripheral nerve fibers and neuromuscular

junctions, as well as decreased formation of fibrotic scar tissues in

the amputated digits.

Activation of MMPs was suggested to be critical during the

process of limb regeneration of newts and digit tip regeneration of

neonatal mice [20,48]. Our previous studies have indicated the

essential role of MMP1 during the muscle healing process and

have demonstrated that MMP1 injection into healthy tissue does

not induce damage [14–17]. Various types of MMPs were also

found to be able to promote angiogenesis/revascularization and

nerve regeneration [49–52], which would be beneficial to the

functional recovery of regenerating digits. The overall positive role

of MMP1 in promoting soft tissue healing may be related to up-

regulating inflammatory proteins that assist in removing tissue

debris [53,54], which in turn improves cell migration of various

types (i.e., inflammation cells and muscle progenitor cells)

[4,10,14], accelerates myogenic differentiation of muscle progen-

itor cells [4,14], and reduces fibrosis formation by repressing

different fibrotic factors during ECM turnover [4,15,16].

Wound closure occurs rapidly in regenerating amphibians;

however, it is slow in non-regenerating mammals. MMP1

treatment improved the wound closure time, which is the initial

step of both wound healing and regeneration (Fig. 2B–D).

Conversely, mice with a mutation in collagen I that rendered it

insensitive to cleavage by MMP1 demonstrated impaired tissue

remodeling and severely delayed wound healing [55–57]. Thus

MMP1 treatment can be seen as an element in the bridge to transit

from non-regenerating scar formation to full regeneration.

The observations of increased utrophin positive cells in healing

digits may suggest a possible role of the protein in digit

regeneration, as it is also involved in embryonic digit development

[31]. The utrophin gene was previously found to be transcrip-

tionally up-regulated in the distal region of the developing digits

including tendons, tendon primordial, and other pre-skeletal

masses [31]. Our results indicate that utrophin deposition was

detected in both MMP1 treated and non-treated amputated digits

(Fig. 3B–G&M, arrowheads, green); however, there was no

statistical difference between treated and untreated digits. Further

study is needed to address utrophin’s role in the digit regeneration

after amputation injury. Although the skeletal tissue in amputated

digits could not regenerate fully to its original architecture and no

significant differences were observed in the elongation of skeletal

tissue with or without MMP1 treatment (Fig. 2E–F), these results

suggest that MMP1 has the ability to promote soft tissue

regeneration. More detailed mechanisms and potential functional

recoveries are under investigation by our research team. Bone

regrowth was demonstrated in neonatal amputation models via

addition of BMP2 or BMP7 [58–61]. Whether a combination of

MMP1 with BMP would induce a similar effect in adult mice

remains to be determined. Additionally, it is possible that bone

regrowth may potentially result in digit elongation to the original

length. Future research will focus on bone and cartilage regrowth

after digit amputation. In conclusion, our results indicate that the

activation of MMPs in the amputated digits of adult mammals

promote regeneration of soft tissues with little fibrous scar tissues,

but does not affect the digit bones.
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