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The oocyte-independent generation of multipotent stem cells is one of the goals in regenerative 

medicine. We report that upon exposure to mouse ES cell (ESC) extracts, reversibly 

permeabilized NIH3T3 cells undergo de-differentiation followed by stimulus-induced re-

differentiation into multiple lineage cell types. Genome-wide expression profiling revealed 

significant differences between NIH3T3  and ESC-extract treated NIH3T3 cells including re-

activation of ESC specific transcripts. Epigenetically, ESC extracts induced CpG de-

methylation of Oct4 promoter, hyper-acetylation of histones 3 and 4 and decreased lysine 9 (K-

9) dimethylation of histone 3. In mouse models of surgically-induced hind limb ischemia (HLI) 

or acute myocardial infarction (AMI) transplantation of reprogrammed NIH3T3 cells 

significantly improved post-injury physiological functions and showed antomical evidence of 

engraftment and trans-differentiation into skeletal muscle, endothelial cell and 

cardiomyocytes. These data provide evidence for the generation of functional multi-potent 

stem like cells from terminally differentiated somatic cells without the introduction of trans-

genes or ESC fusion.   

 

The available evidence demonstrating improvement in myocardial function following transplantation 

of autologous bone marrow (BM) derived stem/progenitor cells, both in pre-clinical as well as in 

available clinical trials, remains a potent force driving discovery and clinical development 

simultaneously and has provided new hope for patients with debilitating heart diseases1, 2. However, 

certain potential limitations of autologous BM or peripheral blood derived stem/progenitor cells have 

also been identified.  Risk factors for coronary artery disease are reported to be associated with a 
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reduced number and impaired functional activity of endothelial progenitor cells (EPC) in the 

peripheral blood of patients3-6.  

 

De-differentiation of adult somatic cells into multi-potent cells might provide an attractive source of 

stem cells for regenerative medicine including post-infarct cardiac and other ischemic tissue repair. 

Recent experimental evidence has revealed that nuclear re-programming of terminally differentiated 

adult mammalian cells leading to their de-differentiation is possible7-10. The best example of somatic 

cell nuclear re-programming comes from reproductive and therapeutic cloning experiments utilizing 

somatic nuclear transfer (SNT), wherein transplantation of somatic nuclei into enucleated oocyte 

cytoplasm can extensively reprogram somatic cell nuclei with new patterns of gene expression, new 

pathways of cell differentiation and successful generation of embryonic stem cells and birth of 

cloned animals11-15. Therapeutic cloning by SNT for clinical application, though conceptually 

attractive is yet not practical given the technical difficulties, extremely low efficiency, oocyte-

dependence, ethico-legal concerns and prohibitive cost associated with the process. It, therefore, 

becomes imperative to develop alternative strategies for somatic cell re-programming. One strategy 

would be to develop oocyte-independent systems, for instance, exposure of somatic cell nuclei to 

ESC-derived cell-free factors/proteins to drive somatic cell de-differentiation and nuclear re-

programming. Indeed, alterations in the fate of one kind of differentiated somatic cells by cell-free 

extracts from other, leading to the acquirement of donor cell characteristics and functions by 

recipient cells, has been previously reported16-22.   

In the present study we report that exposure to mouse ESC extracts induces marked epigenetic 

reprogramming in NIH3T3 fibroblasts including re-activation of ESC specific gene expression. 

These re-programmed cells possess multi-potent stem cell like characteristics including multi-
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lineage differentiation potential and more importantly therapeutic efficacy for improvement in 

physiological functions and anatomical tissue repair in mouse models of surgically induced hind 

limb ischemia and acute myocardial infarction.   

 

RESULTS 

Exposure of NIH3T3 fibroblasts to mES cell extracts leads to the induction of ESC specific 

genes 

Reversibly permeabilized (by Sreptolysin O) NIH3T3 cells were exposed to either with whole cell 

extracts from NIH3T3 (‘self’ as control) or D3 in   ATP-regenerating reaction (see Methods). Plasma 

membranes were sealed by including 2mM calcium chloride in medium and cells were further 

cultured in D3 maintenance medium (complete DMEM + 10 ng/mL of LIF. NIH3T3 cells treated 

with the self extracts (hereto referred as 3T3) did not show any morphological changes up to day 10 

post-treatment (Fig. 1A[a]), whereas NIH3T3 cells treated with D3 extracts (hereto referred as 

3T3/D3) showed noticeable changes in cell morphology as early as day 3 post-treatment forming 

colonies resembling typical ESC morphology by day 10 (Fig. 1A [b-d]). Individual colonies were 

culture expanded and characterized. To determine if the altered morphology of 3T3/D3 cells 

represents the de-differentiation of NIH3T3 cells, we analyzed the induction of mESC markers in 

3T3/D3 and 3T3 cells up to 4 weeks post-treatment, both at the mRNA and protein level. 

Quantitative mRNA expression of mESC specific transcripts Oct4, Nanog, SSEA1, SCF and c-Kit 

was induced in 3T3/D3 cells while 3T3 cells did not express measurable mRNA for any of these 

stem cell markers (Fig. 1B). Enhanced mRNA expression of stem cell specific genes was further 

corroborated by immuno-fluorescence staining for selected proteins Oct4 (Fig. 1C), c-Kit and 

SSEA1 (see Supplementary Fig. S1B,C online).  Further corroboration of NIH3T3 de-
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differentiation was evident by the loss of lamin-A protein expression, a specific marker of somatic 

cells, in 3T3/D3 cells (Fig. 1D,E). Taken together, these data suggest that as an alternative to ESC-

somatic cell fusion and somatic nuclear transfer7, 9, 10, cell-free ESC extracts could provide the 

necessary regulatory components required to induce somatic nuclear reprogramming and alter the 

differentiation status of non-embryonic cells. We further confirmed whether the D3 proteins and not 

the contaminating nucleic acids drive 3T3 de-differentiation. Inactivation of proteins from D3 

extracts prior to reaction either by temperature, trypsin or proteinase K digestion failed to induce any 

mprphological changes or to the activation of Oct4 mRNA (see Supplementary figure S2 online), 

whereas inactivation of either DNA or RNA had no such effect.  

 

D3-extract induced epigenetic changes in NIH3T3 cells involve Oct4 promoter demethylation 

and Histone 3 modifications. 

DNA methylation of CpG residues leading to the silencing of pluripotent embryonic genes, 

including that of Oct4, is known as an integral step governing differentiation and development. Since 

our data indicated that D3-extract exposure leads to the induction of Oct4 mRNA and protein 

expression in 3T3/D3 cells, we performed studies to determine whether D3-extract treatment leads to 

demethylation of CpG residues in the promoter of Oct4 gene. We investigated the methylation status 

of each CpG in the Oct4 promoter region (10 CpG sites) by sodium bisulphite sequencing 8. The 

bisulphite-converted genomic DNA (1μg) from D3, 3T3 and 3T3/D3 (3 weeks post-treatment) cells 

was amplified for the Oct4 promoter by PCR and PCR products were directly sequenced. As 

depicted in Fig. 2A, upon bisulphite treatment all 10 CpG sites in D3 cells were converted from C to 

T, indicating the unmethylated status of Oct4 promoter in this murine ESC cell line (open circles). 

All 10 sites were methylated in 3T3 cells (closed circles), however, treatment of 3T3 cells with D3 
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extracts led to de-methylation at 8/10 CpG residues in 3T3/D3 cells.  The D3-extract induced Oct4 

promoter demethylation in the 3T3/D3 cells was independently corroborated by restriction enzyme 

analysis. In the Oct4 promoter region, there is one HpyCH4IV (methylated CpG specific restriction 

enzyme) site at –202.  We analyzed the DNA methylation status of the –202 site by HpyCH4IV 

restriction analysis in D3, 3T3 and 3T3/D3 cells. A ~250bp promoter region including site –202 of 

mouse Oct4 was amplified by PCR from the bisulphite treated genomic DNA from all three cell 

types. As shown in Fig 2B, the PCR product was not digested with HpyCH4IV in D3 cells, 

indicating that the genomic DNA of D3 cells was unmethylated at this particular Oct4 promoter site. 

In contrast, the PCR product was readily digested in 3T3 cells indicating methylation of the Oct4  

–202 CpG site. Interestingly, the PCR product from 3T3/D3 cells was resistant to digestion by 

HypCH4IV, suggesting that treatment of 3T3 cells with D3 extracts induced de-methylation of CpG 

sites thereby reversing the repression of Oct4 mRNA expression, observed in 3T3 cells.   

DNA methylation/demethylation and dependent gene suppression/activation is coupled with 

modifications to the histone proteins, which together lead to chromatin remodeling and new patterns 

of gene expression23, 24. Therefore, we further confirmed the D3-extract induced epigenetic changes  

by assessing the acetylation of histones (H) 3 and 4 and methylation status of lysine 9 (K9) residue 

in histone 3 protein within  Oct4 promoter by Chromatin Immunoprecipitation (ChIP) assays25 using 

specific antibodies. The Oct4 promoter was amplified from immunoprecipitated chromatin DNA by 

PCR. ChIP analyses showed that the promoter of Oct4 had increased acetylation of H3 and H4 (Fig. 

2C) and decreased dimethylation of K9-histone 3 (Fig. 2D) in 3T3/D3 cells compared to 3T3 cells. 

Together these data suggest that D3-extract induced de-differentiation and nuclear re-programming 

of 3T3/D3 cells is mediated, at least in part, by chromatin remodeling leading to the activation of 

Oct4. Considering that DNA methylation and histone modifications are involved in various 
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biological phenomena, such as tissue-specific gene expression, cell differentiation, X-chromosome 

inactivation, genomic imprinting, changes in chromatin structure, and tumorogenesis26-34, it is 

conceivable that the changes in Oct4 promoter CpG methylation and histone modifications by 

exposure of 3T3 cells to ESC extracts, may be one of the principal epigenetic events underlying de-

differentiation and activation of ESC specific genes in 3T3 cells.  

 

D3-extract treatment induces genome-wide gene expression profile changes in re-programmed 

NIH3T3 cells 

To gain further insights into the changes in gene expression patterns in reprogrammed 3T3/D3 cells, 

we performed global gene-expression profiles of D3, 3T3 and 3T3/D3 using Affymetrix mouse 

genome 2A gene chips. Differentially expressed genes between the three cell types 3T3, D3, and 

3T3/D3 were determined by a simple one-way ANOVA performed on the RMA expression values 

of each probe set, using the R package limma35. A multiple testing adjustment36 was performed on 

the resulting statistics to adjust the false discovery rate. Differentially expressed probes with adjusted 

p-value < 0.001 and a fold-change of greater than 2 (absolute log fold change of > than 1) were 

extracted for further inspection. This resulted in 3,286 probes with statistically significant 

differential expression between cell types 3T3 and 3T3/D3 including the significant up-regulation of 

ESC specific genes and down-regulation of somatic genes. Hierarchical clustering, using the Pearson 

correlation coefficient and average agglomeration method, was performed on the 3,286 genes (2187 

down-regulated genes and 1099 up-regulated genes) that were differentially expressed between 3T3 

and D3/3T3 cells. The heatmap in Fig. 3A of z-scored probes illustrates this clustering, in which z-

scores (subtraction of mean and division by standard deviation of normalized values) were computed 

for each probe across all 9 arrays. The expression pattern of a subset of 99 significantly up-regulated 
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genes in 3T3/D3 cells, including Oct4 and nanog, was similar in D3 cells (Fig.3B). The expression 

levels of representative up-regulated and down-regulated genes observed in gene chip experiments 

were independently confirmed by real-time RT-PCR which showed similar upregulation of ESC 

specific transcripts and down-regulation of somatic transcripts (Fig. 3C). A list of selected genes, 

their relative expression level and functional description is depicted in supplementary Table S1 and 

functional grouping of all 3,286 genes found to be differentially expressed between 3T3 and 3T3/D3 

cell types is shown in supplementary Fig. S3.  

 

Re-programmed 3T3/D3 cells re-differentiate into cells of multiple lineage  

We next determined the re-differentiation potential of de-differentiated 3T3/D3 cells into multiple 

cell types both in vitro. Under culture conditions conducive for cell-type specific differentiation, 

3T3/D3 cells acquired protein expression specific to neuronal, endothelial (EC), cardiomyocyte 

(CMC) and adipocyte cells (Fig 4A). Cell-type specific mRNA expression analysis (Fig.4B,C) and 

morphological appearance (see Supplementary Fig.S4 online) further confirmed EC and CMC 

differentiation.  

 

Transplantation of re-programmed 3T3 cells into surgically induced mouse hind limb ischemia 

model improves functional and anatomical blood repair.  

To ascertain the functional efficacy of reprogrammed cells in a physiologically relevant model of 

tissue repair, we conducted cell transplantation studies in a well-established mouse hind limb 

ischemia model described in our prior publication25. Immediately following the surgery, mice were 

assigned to two groups (n=15 each) and 3T3/D3 or 3T3 cells (2X105), labeled with DiI for tracing 

purposes, were injected into the ischemic muscles at 3 different sites. Physiological blood flow 
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recovery was assessed by Laser Doppler Perfusion Imaging (LDPI) on days 7, 10 and 14 (n=5 each 

time point) post- surgery, in both groups of mice. As shown in representative perfusion images in 

Fig. 5A  and quantified as the ratio of blood flow in ischemic to non-ischemic limb, in Fig. 5B, mice 

transplanted with 3T3/D3 cells, displayed significantly improved perfusion in the ischemic limb at 

all time points compared to mice treated with 3T3 control cells (p<0.01). Tissue sections from 

ischemic hind limbs were stained with mouse FITC-labeled anti-isolectinB4 (IB4) and anti-desmin 

antibodies todetrmine differentiation of transplanted cells. Fluorescent microscopy was conducted to 

visualize IB4+ (green) and DiI+ (red) cells and desmin+ (green) and DiI+ (red) cells to determine 

EC and muscle differentiation, respectively, of transplanted cells and images in the same visual field 

were merged to generate composite image.  As shown in Fig. 5D many IB4+DiI double positive 

cells (indicated by yellow fluroscence) were observed in the ischemic tissue of mice treated with 

3T3/D3 cells (panel b) compared to those treated with control 3T3 cells (panel a). Similarly, a large 

number of 3T3/D3 cells co-expressed muscle marker, desmin, in the ischemic hind limbs while very 

few desmin+DiI double positive cells in control 3T3 treated mice were observed (Fig. 5D, panels c 

and d). Similar patterns were observed when tissue sections were stained with additional EC and 

muscle cell markers (CD31 and alpha-smooth muscle actin; see supplementary Fig. S5 online) 

Taken together, these data suggest that re-programmed somatic cells are capable of multi-lineage 

differentiation in vivo and participate in the functional tissue repair and regeneration. 

  

Intra-cardiac transplantation of 3T3/D3 cells improves left ventricular functions after 

myocardial infarction  

Functional efficacy of 3T3/D3 cells in tissue repair was also tested in a model of acute myocardial 

infarction (AMI). Mice underwent surgery to induce AMI by ligation of the left anterior descending 
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coronary artery, as described38. Animals were sub-divided into 3 groups (10 each), and received 

intramyocardial injection of 5X104 lentiviral-GFP transduced (to track transplanted cells up to 4 

weeks, in vivo) 3T3/D3 or 3T3 control cells or saline, respectively, in a total volume of 10μl at 5 

sites (basal anterior, mid anterior, mid lateral, apical anterior and apical lateral) in the peri-infarct 

area. Left ventricular function was assessed by transthoracic echocardiography (SONOS 5500, 

Hewlett Packard) as described38,39. We performed physiological assessment of the left ventricular 

(LV) function after AMI in all groups of mice at basal level before surgery and on days 7, 14 and 28, 

post-AMI). Left ventricular end-diastolic areas (LVEDA) were similar in the 3T3 cell and saline 

groups before and at all time points after AMI (Fig. 6A, red and grey lines, respectively). In contrast, 

however, mice treated with the 3T3/D3 cells revealed less ventricular dilation (Fig. 6A blue line, p< 

0.05 in 3T3/D3 vs. control groups). Additionally, fractional shortening (FS), an indicator of 

contractile function, was consistently depressed in mice receiving saline and control 3T3 cells (Fig. 

6B). However, treatment with 3T3/D3 cells significantly improved FS at all time points tested (at 4 

weeks post-surgery, p< 0.01 vs. saline group and p<0.05 vs. control 3T3 cell treated group). The 

individual values for evaluated LV function parameters at various time points are shown in 

Supplementary Table S2 online. Gains in post-AMI physiological heart function in mice 

transplanted with D3-extract treated 3T3 cells were further corroborated by histological evaluation 

of hearts from each group of mice. As shown in Fig. 6C, the fibrosis areas in mouse hearts receiving 

either saline or control 3T3 cells were significantly larger than in mice that received 3T3/D3 cells 

(p<0.001). Tissue sections were also stained with BS1 lectin to determine the capillary density at the 

border zone of the infarcted myocardium. Significantly higher capillary density was observed in the 

mice receiving 3T3/D3 cells than in mice receiving control 3T3 cells or saline (Fig. 6D, p<0.01).  
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Immuno-fluorescence staining on myocardial sections was performed to determine CMC and EC 

differentiation of the transplanted (GFP+) cells. EC differentiation of transplanted cells was 

investigated by co-expression of GFP+CD31 by transplanted cells. As shown in Fig. 6E (panels a,b), 

GFP+CD31 double positive cells were observed in myocardial sections obtained from mice 

transplanted with 3T3/D3 cells, while sections obtained from control 3T3 transplanted hearts did not 

show the evidence for EC differentiation. To evaluate the CMC differentiation of the transplanted 

cells in the myocardium, tissue sections were stained with a specific CMC marker, connexin43, and 

the GFP+ cells (3T3 or 3T3/D3; green) co-expressing connexin43 (red) were visualized as double 

positive (yellow) cells in the merged images. As shown in Fig. 6E (panels c,d), GFP + connexin43 

double positive cells (yellow fluorescence) were observed in mice treated with 3T3/D3 cells, 

suggesting that some of the transplanted cells differentiated into CMC lineage in vivo, while no 

evidence of CMC differentiation was observed for transplanted 3T3 cells. Immunofluoresence 

staining of additional CMC specific marker cardiotroponin I, further corroborated CMC 

differentiation of 3T3/D3 cells (see Supplementary Fig. S6A, online). Transplantation of 3T3/D3 

cells also led to decreased apoptosis and increased cellular proliferation in the ischemic myocardium 

as assessed by TUNEL positive and Ki67 positive nuclei, respectively (see supplementary Fig. 

S6B, online).   

 

DISCUSSION 

The goal of therapeutic cloning is to produce pluripotent stem cells with the nuclear genome of the 

patient and induce the cells to differentiate into replacement cells, for example, CMCs for repairing 

damaged heart tissue. Reports on the generation of pluripotent stem cells12-14 or histocompatible 

tissues39 by nuclear transplantation, and on the correction of a genetic defect in cloned ESCs40, 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
07

.1
20

8.
1 

: P
os

te
d 

5 
O

ct
 2

00
7



 - 12 - 

suggest that therapeutic cloning could, in theory, provide a source of cells for regenerative therapy. 

Recent evidence on the efficacy of human therapeutic cloning, however, underscores the difficulties 

associated with the generation of human ESC lines for therapeutic purposes.  Moreover, a number of 

limitations may hinder the strategy of therapeutic cloning for future clinical applications. Extremely 

low efficiency of somatic nuclear transfer is a major concern41. Analysis of the literature on mouse 

SNT derived ESC lines raises concerns about the feasibility and relevance of therapeutic cloning, in 

its current embodiment, for human clinical practice41-43. This limitation might be alleviated with 

oocytes from other species39 but mitochondrial genome differences between species are likely to 

pose a problem. It is therefore desirable to develop alternative strategies to oocyte-dependent 

autologous stem cell generation. Our data indicating mESC extract-mediated reverse de-

differentiation of terminally differentiated murine fibroblasts and multi-lineage re-differentiation of 

these reprogrammed cells not only support the feasibility of such an approach but more importantly, 

provide evidence that the stem-like cells obtained using this methodology are functionally competent 

for tissue repair. 

 

Oocyte-independent epigenetic re-programming of somatic cell by somatic-ES cell fusion reported by 

several recent studies has generated a lot of enthusiasm9,10 . However, this strategy, although excellent 

for mechanistic studies, retains certain drawbacks that are associated with oocyte-dependent 

therapeutic cloning. Firstly, the 2 cells used to generate hybrid cells are not derived from autologous 

source, secondly the efficiency of fusion remains low (1-3/1000), thirdly the genetic stability of 

heterokaryon hybrids remains to be established:- one will have to devise the technological 

innovations to delete additional set of chromosomes, and finally the efficacy of reprogrammed cell to 

retain the ES like properties if ES cell derived nucleus is removed remains to be elucidated. Recently, 
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a major breakthrough was reported whereby forced expression of  transcription factors Oct4, Sox2, c-

Myc and Klf4 was shown to induce pluripotency in fibroblasts (designated as induced pluripotent 

stem (iPS) cells), although with a low efficiency44.  The iPS cells were isolated by selection for 

activation of Fbx15, which is a downstream gene of Oct4. This important study, however, left a 

number of questions unresolved: (1) although iPS cells were pluripotent they were not identical to ES 

cells (for example, iPS cells injected into blastocysts generated abnormal chimaeric embryos that did 

not survive to term); (2) gene expression profiling revealed major differences between iPS cells and 

ES cells; (3) because the four transcription factors were transduced by constitutively expressed 

retroviral vectors it was unclear why the cells could be induced to differentiate and whether 

continuous vector expression was required for the maintenance of the pluripotent state; and (4) the 

epigenetic state of the endogenous pluripotency genes Oct4 and Nanog was incompletely 

reprogrammed, raising questions about the stability of the pluripotent state. 

 Our observations demonstrating that mESC protein extracts can reprogram somatic cells towards 

multipotency, would argue that multipotent epigenome could be activated in somatic cells without 

fusion and forced expression of nucleic acids. More importantly, our’s is the first study to 

demonstrate that transplantation of de-differentiated somatic cells can repair ischemic tissue and 

mediate gain in physiological functions in relevant models of tissue injury. Taken together our 

biochemical, molecular and functional data provide an oocyte- independent approach for the 

generation of functional autologous multipotent cells from terminally differentiated somatic cells. 

The refinement of techniques and additional experimental data to elucidate applicability of this 

approach in primary somatic cells of different lineages and derivation of single cell clones displaying 

stable, long-term reprogramming may hold significant promise for future use of such generated cells 

in regenerative medicine, including cardiac repair and regeneration.  
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METHODS 

Cell culture. NIH3T3 Swiss-Albino fibroblasts (ATCC) were cultured in DMEM (Sigma-Aldrich) 

with 10% FCS, L-glutamine, and 0.1 mM β-mercaptoethanol. The D3-mESC were obtained from 

ATCC and cultured as described earlier45.  

Cell Extracts. The mESC and 3T3 cell extracts were prepared as described previously22. Briefly, the 

cells were washed in phosphate-buffered saline (PBS) and in cell lysis buffer (100 mM HEPES, pH 

8.2, 50 mM NaCl, 5 mM MgCl2, 1 mM dithiothreitol, and protease inhibitors), sediment at 10,000 

rpm, re-suspended in 1 volume of cold cell lysis buffer, and incubated for 30–45 min on ice. Cells 

were sonicated on ice in 200-μl aliquots using a sonicator fitted with a 3-mm-diameter probe until all 

cells and nuclei were lysed, as judged by microscopy. The lysate was sedimented at 12,000 rpm for 

15 min at 4°C to pellet the coarse material. The supernatant was aliquoted, frozen in liquid nitrogen 

and stored at -80°C. Protein concentration of the mESC and NIH3T3 cell extracts were determined 

by Bradford assay.  

 

Streptolysin –O (SLO)-mediated Permeabilization and Cell Extract Treatment. NIH3T3 cells 

were washed in cold PBS and in cold Ca2+- and Mg2+-free Hank's balanced salt solution (HBSS) 

(Invitrogen, Carlsbad, CA). Cells were re-suspended in aliquots of 100,000-cells/100 μl of HBSS, or 

multiples thereof; placed in 1.5-ml tubes; and centrifuged at 1500 rpm for 5 min at 4°C. After 

sedimentation, cells were suspended in 97.7 μl of cold HBSS, tubes were placed in a H2O bath at 

37°C for 2 min, and 2.3 μl of SLO (Sigma-Aldrich) (100 μg/ml stock diluted 1:10 in cold HBSS) 

was added to a final SLO concentration of 230 ng/ml. Samples were incubated horizontally in a H2O 

bath for 50 min at 37°C with occasional agitation and set on ice. Samples were diluted with 200 μl of 

cold HBSS and cells were collected by sedimentation at 1500 rpm for 5 min at 4°C. Permeabilization 
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efficiency of >80% was obtained as assessed by monitoring uptake of a 70,000-Mr Texas Red-

conjugated dextran (50 μg/ml; Invitrogen). After permeabilization, NIH3T3 cells were suspended at 

2000 cells/μl in 100 μl of mESC extract or control NIH3T3 cells extract containing an ATP-

regenerating system (1 mM ATP, 10 mM creatine phosphate, and 25 μg/ml creatine kinase; Sigma-

Aldrich), 100 μM GTP (Sigma-Aldrich), and 1 mM each nucleotide triphosphate (NTP; Roche 

Diagnostics, Indianapolis, IN). The cells were incubated for 1 hr at 37°C in a H2O bath with 

occasional agitation. To reseal plasma membranes, the cell suspension was diluted with complete 

DMEM medium containing 2 mM CaCl2, antibiotics and cells were seeded at 100,000 cells per well 

on a 48-well plate. After 2 hrs, floating cells were removed, and cells were cultured in D3 

maintenance medium. 

 

Determination of de-differentiation. De-differentiation of NIH3T3 following D3-cell extract 

treatment was determined by the induction of ESC markers both at mRNA level by quantitative real 

time PCR and at protein level by immuno-staining.  Total cellular RNA was harvested at various 

time points and the quantitative real-time RT-PCR was performed to determine mRNA expression of 

selected embryonic stem cell markers in self extract and D3-extract treated cells, as described 

previously45,46.  Relative mRNA expression of target genes was normalized to the endogenous 18S 

control gene (Applied Biosystems). Induction of embryonic stem cell specific mRNAs was further 

corroborated by immunofluorescence protein staining of induced specific stem cell markers in 

NIH3T3 cells treated with D3 extract. For immuno-staining, both control and D3 extract treated 

NIH3T3 cells were cultured in medium in the absence and presence of LIF for 10 days. Then the 

cells were harvested and cultured 1 X 104 cells per well in 4-well slides coated with 0.5% gelatin for 

another 2 days. The slides were stained with specific antibodies to stem cell markers, c-Kit, SSEA1 
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and Oct-4. De-differentiation was also determined by the lamin B and lamin A/C (markers of soma) 

protein expression.  

 CMCs and EC lineage differentiation of 3T3/D3 cells. To determine the re-differentiation 

potency of dedifferentiated 3T3/D3 cells into cardiomyocytes, cells were cultured in complete 

DMEM containing 5 ng/ml of LIF and 3 ng/ml of Bone morphogenic protein –2 (BMP2) in 6-well 

culture plates (1 X 106 cells per well) and 4-well chamber slides (1 X 104 cells per well) coated with 

0.5% gelatin for 7 days45. Total cellular RNA was harvested from 6-well culture plate and used to 

analyze quantitative mRNA expression of CMC specific markers, cardiotroponin I and T, connexin 

43, GATA4, Mef2c, Nkx2.5 and Tbx5. The expression was normalized to that of 18S RNA. The 

protein expression of was determined by immunochemical staining. For EC lineage differentiation, 

cells were cultured in endothelial differentiation medium (10% FBS/EBM-2; Clonetics) medium 

containing supplements (SingleQuot Kit; Clonetics) for 7 days. mRNA expression for EC markers, 

CD31 and Flk1 was determined by real-time PCR and by incubation with DiI-acLDL (Biomedical 

Technologies) for one hour followed by Isolectin B4 staining.  The dual stained cells were 

considered endothelial cells. 

 

Induction of neuronal and adipogenic differentiation. The neuronal differentiation was performed 

as described earlier47.  Briefly, cells were seeded in complete DMEM medium at 5 × 105 cells per 

90-mm sterile culture dish. Suspension cultures were maintained for 24 hrs before adding 10 μM all-

trans-retinoic acid (Sigma-Aldrich). Cells were cultured for 3 wks in retinoic acid, replacing the 

medium every 2–3 days. Subsequently, cell aggregates were washed in complete DMEM medium 

and plated onto poly-L-lysine (10 μg/ml; Sigma-Aldrich)-coated plates in complete DMEM medium 

containing the mitotic inhibitors fluorodeoxyuridine (10 μM; Sigma-Aldrich), cytosine arabinosine 
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(1 μM; Sigma-Aldrich), and uridine (10 μM; Sigma-Aldrich). The culture dishes were stained for 

neuronal markers nestin and β-tubulin-III. The adipogenic differentiation was performed as 

described elsewhere48. Briefly, the cells were cultured for 21 days in complete DMEM/Ham’s F-12 

medium containing dexamethasone, insulin and indomethacin. Cells were fixed with 4% 

paraformaldehyde, washed in 5% isopropanol, and stained for 15 min with Oil-Red-O (Sigma 

Aldrich). 

 

Immunochemical staining. For immunochemical staining, cells under different culture conditions 

were cultured on 4 well slides for indicated time, rinsed once with PBS and fixed with 4% 

paraformaldehyde (Sigma) in PBS for 30 min. The slides were again rinsed three times with PBS 

and then permeabilized with 0.3% of Triton X-100 (Sigma) in PBS for 5 min. After 2 washes with 

PBS, specific primary antibodies diluted in PBS containing 1% FBS were added and incubated 

overnight at 4°C. After 3 washes with PBS, the slides were incubated with respective secondary 

antibodies for 1 hr at 37°C. The excess secondary Abs on the slides were rinsed off with PBS three 

times. Finally, to visualize nuclei, slides were stained with DAPI for 5 min, washed 3 times with 

PBS, allowed to dry for 5 min and then mounted on Vectashield mounting medium for fluorescence 

imaging. The photographs were taken in a Nikon TE200 Digital Imaging system.  

 

Determination of Oct4 promoter methylation, bisulfite genomic sequencing and Chromatin 

Immunoprecipitation (ChIP). Genomic DNA prepared from D3, 3T3/D3 and 3T3 cells was 

amplified for the Oct4 promoter and the PCR product was digested with HpyCH4IV restriction 

enzymes that only cleave at methylated CpG sites. The digested products were analyzed on agarose 

gels. For genomic bisulphate sequencing, genomic DNA from cells was digested with EcoR1 and 
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was used for bisulphite treatment using an EZ DNA methylation-Gold kit essentially following the 

manufacturer’s instructions. The treated DNA was ethanol-precipitated and resuspended in water 

and then amplified by PCR using mouse methylation specific Oct4 primers   PCR products were 

digested with the HpyCH4IV (New England Biolabs) restriction enzyme. Because only 

unmethylated cytosine residues were changed to thymines by the sodium bisulphite reaction, PCR 

fragments from nonmethylated genomic DNA were resistant to HpyCH4IV, and those from 

methylated DNA were digested by the enzymes. The resultant products of restriction mapping were 

assessed by agarose gel electrophoresis. The Remaining PCR products were purified through the 

Wizard DNA Clean-Up system (Promega, Madison, WI), and were directly sequenced to determine 

the methylation status of all 10 CpG residues present in the amplified promoter region. Chromatin 

Immunoprecipitation (ChIP) assays were performed essentially as described in our recent 

publication25. Anti-Acetyl H3, anti-acetyl H4 and anti-dimethyl K9 antibodies were purchased from 

Upstate Biotech and Santa Cruz.  

 

Genome-wide expression profiling and gene expression analyses. Affymetrix mouse genome A2 

GeneChips were used for hybridization. Using a poly-dT primer with a incorporated T7 promoter, 

double-stranded cDNA was synthesized from 5 µg total RNA using a double-stranded cDNA 

synthesis kit (Invitrogen, Carlsbad, CA).  Double-stranded cDNA was purified with the Affymetrix 

sample cleanup module (Affymetrix, Santa Clara, CA). Biotin–labeled cRNA was generated from 

the double-stranded cDNA template though in-vitro transcription with T7 polymerase, and a 

nucleotide mix containing biotinylated UTP (3'-Amplification Reagents for IVT Labeling Kit; 

Affymetrix).  The biotinylated cRNA was purified using the Affymetrix sample cleanup module.  

For each sample, 15 µg of IVT product was digested with fragmentation buffer (Affymetrix, Santa 
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Clara, CA) for 35 minutes at 94ºC, to an average size of 35 to 200 bases. 10 µg of the fragmented, 

biotinylated cRNA, along with hybridization controls (Affymetrix), was hybridized to a Mouse 

430A 2.0 GeneChip for 16 hours at 45ºC and 60 rpm. Arrays were washed and stained according to 

the standard Antibody Amplification for Eukaryotic Targets protocol (Affymetrix).  The stained 

arrays were scanned at 532 nm using an Affymetrix GeneChip Scanner 3000. 

During analysis and for quality control, GeneChip® arrays were first inspected using a 

series of quality control steps. Present call rates were consistent across the arrays, ranging from 56% 

to 63%. The hybridization controls (BioB, BioC, Cre) were found to be present 100% of the time. 

Images of all arrays were examined, and no obvious scratches or spatial variation was observed. A 

visual inspection of the distribution of raw PM probe values for the twelve arrays showed no 

outlying arrays.  Similarly, digestion curves describing trends in RNA degradation between the 5’ 

end and the 3’ end of each probeset were generated, and all twelve proved comparable. Probe sets 

with no present calls across the twelve arrays as well as Affymetrix control probe sets were excluded 

from further analyses. Raw intensity values for the remaining 17,213 probe sets were processed first 

by RMA (Robust Multi-Array Average) using the R package affy46.  Specifically, expression values 

were computed from raw CEL files by first applying the RMA model of probe-specific correction of 

PM (perfect match) probes. These corrected probe values were then normalized via quantile 

normalization, and a median polish was applied to compute one expression measure from all probe 

values. Resulting RMA expression values were log2-transformed. (Please see the affy manual at 

www.bioconductor.org/repository/devel/vignette/affy.pdf for details). Distributions of expression 

values processed via RMA of all arrays were very similar with no apparent outlying arrays. Pearson 

correlation coefficients and Spearman rank coefficients were computed on the RMA expression 
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values (log2-transformed) for each set of biological triplicates. Spearman coefficients ranged from 

.990 to .996; Pearson coefficients ranged between 0.991 and 0.997. Differential expression of genes 

was determined by one-way ANOVA on the RMA expression values of each probe set, using the R 

package limma35. A multiple testing adjustment36 was performed on the resulting statistics to adjust 

the false discovery rate. Differentially expressed probes with adjusted p-values < 0.01 and a fold-

change of greater than two (absolute log fold change of greater than 1) were extracted for further 

inspection. Hierarchical clustering was obtained by using the Pearson correlation coefficient and an 

average agglomeration method, and the heatmaps were generated using z-scored probes, in which z-

scores (subtraction of mean and division by standard deviation of normalized values) were computed 

for each probe across all twelve arrays.  

 

GFP- transduction and DiI labeling of cells for transplantation.  For tracking of transplanted 

cells in AMI model, cells were transduced with a lentivirus-GFP construct. For tracking of 

transplanted cells in hind limb ischemic tissues, the cells were labeled with DiI before the 

transplantation25.  

 

Hind limb ischemia, cell transplantation, and laser Doppler imaging and histology. All 

procedures were performed in accordance with the guidelines of the Institutional Animal Care and 

Use Committee. The hind limb ischemia was established by the excision of femoral artery in the left 

hind limb in 10 male 8-week- old mice (Jackson Labs) essentially as described in our prior 

publication25. The animals were grouped into 2 (n=15/group), each receiving either a total of DiI-

labeled- 5X104 3T3 cells or 3T3-D3 cells at multiple sites into the ischemic muscle. Laser Doppler 

imaging to determine blood flow was performed immediately after surgery (day 0) and at days 7, 10 
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and 14 after cell injections. Fourteen days after cell transplantation, the tissues were harvested and 

assayed by histochemical/immuno-fluorescence staining for isolectin B4, CD31 (EC identity), 

Desmin, alpha-SMA (muscle), and DiI followed by fluorescence microscopy. In some experiments, 

animals were perfused with FITC–BS-1 lectin to identify capillaries before sacrifice and tissue 

retrieval. 

 

Mice and establishment of AMI. The study involved 8-week-old male FVB mice (n=30; Jackson 

Laboratories).  Mice underwent surgery to induce acute myocardial infarction by ligation of the left 

anterior descending coronary artery, as described before37,49. Animals were sub-divided into 3 

groups and received intramyocardial injection of 5X104 lentiviral-GFP transduced D3-extract treated 

cells, 3T3 fibroblast control cells and saline, respectively, in total volume of 10μl at 5 sites (basal 

anterior, mid anterior, mid lateral, apical anterior and apical lateral) in the peri-infarct area. 

 

Physiological assessments of LV function and histology. Mice underwent echocardiography just 

before MI (base level) and one, two and four weeks after AMI as described before37, 38. Briefly, 

transthoracic echocardiography was performed with a 6 to 15 MHz transducer (SONOS 5500, 

Hewlett Packard). Two-dimensional images were obtained in the parasternal long and short axis and 

apical 4-chamber views. M-mode images of the left ventricular short axis were taken just below the 

level of the mid-papillary muscles. Left ventricular end-diastolic and end-systolic dimensions were 

measured and functional shorting was determined according to the modified American Society of 

Echocardiography-recommended guidelines. A mean value of 3 measurements was determined for 

each sample. On day 28 post-AMI, Mice were euthanized and the aortas were perfused with saline. 

The hearts were sliced into 4 transverse sections from apex to base and fixed with 4% 
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paraformaldehyde, methanol or frozen in OCT compound and sectioned into 5-μm thickness. 

Immunoflurorescence staining was performed to determine CMC and EC differentiation of 

transplanted cells. For the measurement of fibrosis, tissues sections were frozen in OCT compound 

and sectioned for elastic tissue/trichrome to measure the average ratio of the external circumference 

of fibrosis area to LV area. 

Statistical analyses.  

All experiments were carried out at least 3 times with similar results. Results are presented as mean 

± SEM. Comparisons were done by ANOVA (GB-STAT; Dynamic Microsystems Inc.) or χ2 test for 

percentages. All tests were 2-sided, and a P value of less than 0.05 was considered statistically 

significant. 
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Figure Legends 

Figure 1.  De-differentiation of mES cell extract treated NIH3T3 cells. NIH3T3 fibroblasts were 

reversibly permeabilized with SLO and exposed to D3-mESC whole cell extracts or to control self 

(NIH3T3) extract. Cells were cultured in DMEM supplemented with LIF (10ng/ml) and monitored 

daily for morphological changes. (A) Representative phase contrast image of self-extract treated 3T3 

on day 10 (a) and D3-extract treated 3T3 on days 3 (b), 5 (c) and 10 (d). (B) Total RNA from 

3T3/D3, 4 weeks after initial treatment, was isolated and analyzed for the quantitative mRNA 

expression by real-time RT-PCR for indicated ESC markers. Data is plotted as fold mRNA 

expression compared to the mRNA levels in self-extract treated 3T3 cells averaged from 3 similar 

experiments. (C) Cells were cultured on 4 well slides and Oct4 expression was determined by 

immuno-fluorescence staining. Representative picture is shown. (D) Loss of somatic cell marker, 

lamin A, in 3T3/D3 cells was analyzed by immuno-fluorescence cyto-chemistry and by western 

blotting (E). 

 

Figure 2. D3 extract treatment induces epigenetic changes in 3T3/D3 cells. (A) Genomic DNA 

from indicated cells was digested with EcoRI and was treated with sodium meta-bisulphite. Oct4 

promoter was amplified from modified DNA using specific primers by PCR and PCR products were 

sequenced for the evidence of cytosine conversion to thymine at unmethylated CpG. Filled circle 

represents methylated CpG and open circles represent unmethylated CpG in Oct4 promoter. (B) 

Oct4 promoter fragment was amplified from bisulphite treated genomic DNA of indicated cells and 

was subjected to digestion with HypCH4IV restriction enzyme that specifically cleaves methylated 

CpG. Post-digestion DNA was resolved on 2% ethidium bromide stained gels and photographed. 

The promoter of Oct4 was analyzed by ChIP for histone H3 and H4 acetylation (C) and for 
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dimethylation status of lysine 9 of histone H3 (D). Gels from 3 separate experiments were quantified 

by NIH image analysis and average values were plotted against levels observed in D3 cells 

(arbitrarily given a numerical value of 1).    

 

Figure 3. Global gene expression analyses of re-programmed 3T3/D3 cells. (A) Heatmap of z-

scored values for 3286 genes showing significant differences (p<0.001 and absolute log fold change 

of >1) between 3T3 and 3T3/D3 cells and the expression level of same genes in D3 cells. (B) 

Heatmap of z-scored 99 genes down-regulated in 3T3 cells and up-regulated in D3 and 3T3/D3 cells. 

(C) Real-time RT-PCR analysis of selected genes up-regulated or down-regulated in re-programmed 

3T3/D3 cells.   

 

Figure 4. De-differentiated 3T3/D3 cells differentiate into multiple type cells.  (A) Under culture 

conditions conducive to specific differentiation, 3T3/D3 cells (bottom panels) show protein 

expression of neuronal (a) CMC (b), endothelial cell (c) and adipocytes (d). (B) Quantitative mRNA 

expression of CMC (B) and EC (C) specific transcripts in 3T3/D3 cells cultured under CMC and EC 

differentiation conditions. Graph represents average fold mRNA expression from 3 experiments 

plotted against expression levels in control 3T3 cells.  

 

Figure 5. Transplantation of 3T3/D3 improves recovery of ischemic hind limbs. (A) 

Representative perfusion imaging of ischemic hind limbs immediately after HLI (left panels) and 14 

days post transplantation of either 3T3 (top right panel) or 3T3/D3 (bottom right panel) cells. (B) 

Cumulative perfusion of ischemic hind limbs on various days plotted as the ratio of blood flow in 

ischemic: non-ischemic limbs. (C) Capillaries in the ischemic limbs were identified as fluorescent 
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structures (green), stained with in vivo perfusion with FITC-BS-1 lectin. The number of 

capillaries/per high visual field in different sections was quantified and averaged. (D) Differentiation 

of transplanted 3T3 and 3T3/D3 cells into EC (a, b, respectively) and skeletal muscle cells (b, d, 

respectively). Merged images of  DiI+Isolectin B4 double-positive cells (yellow fluorescence) and 

DiI+ desmin double positive cells was considered as differentiation into EC and skeletal muscle cell, 

respectively. 

 

Figure 6. Transplantation of 3T3/D3 cells improves Left Ventricular functions and histological 

repair in a mouse model of acute myocardial infarction. Transplantation of 3T3/D3 cells 

significantly improved left ventricular end-diastolic areas (A) and left ventricular fractional 

shortening (B) as compared to mice treated with control 3T3 cells and/or saline. (C) Quantification 

of % fibrosis area in 3 groups of mice. (D) Quantification of capillary density. Mice were perfused 

with FITC-BS1 lectin and fluorescently labeled capillaries were counted in 6 randomly selected 

tissue sections at the border zone from each animal.  (E) Transplanted 3T3/D3 cells differentiate into 

EC and CMCs, in vivo. Representative merged images (panels a,b) showing co-localization of GFP+ 

(green) transplanted 3T3 control (a) and 3T3/D3 (b) and EC specific marker, CD31+ (red) cells. 

Double positive cells are identified by yellow fluorescence in the merged images. Representative 

merged figures (panels c,d) showing co-localization of GFP+ (green) transplanted control 3T3 cells 

(c) and 3T3/D3 cells (d) and CMC specific marker, connexin43+ (red) cells. Double positive cells 

are identified by yellow fluorescence in the merged images. 
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