16 research outputs found

    Exploring the impact of a learning dashboard on student affect

    No full text
    Research highlights that many students experience negative emotions during learning activities, and these can have a detrimental impact on behaviors and outcomes. Here, we investigate the impact of a particular kind of affective intervention, namely a learning dashboard, on two deactivating emotions: bore

    A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect

    No full text
    This article describes research results based on multiple years of experimentation and real-world experience with an adaptive tutoring system named Wayang Outpost. The system represents a novel adaptive learning technology that has shown successful outcomes with thousands o

    Correction to: A Multimedia Adaptive Tutoring System for Mathematics that Addresses Cognition, Metacognition and Affect

    No full text
    This article describes research results based on multiple years of experimentation and real-world experience with an adaptive tutoring system named Wayang Outpost. The system represents a novel adaptive learning technology that has shown successful outcomes with thousands of students, and provided teachers with valuable information about students’ mathematics performance. We define progress in three areas: improved student cognition, engagement, and affect, and we attribute this improvement to specific components and interventions that are inherently affective, cognitive, and metacognitive in nature. For instance, improved student cognitive outcomes have been measured with pre-post tests and state standardized tests, and achieved due to personalization of content and math fluency training. Improved student engagement was achieved by supporting students’ metacognition and motivation via affective learning companions and progress reports, measure

    BME 2.0: Engineering the Future of Medicine

    No full text
    If the 20th century was the age of mapping and controlling the external world, the 21st century is the biomedical age of mapping and controlling the biological internal world. The biomedical age is bringing new technological breakthroughs for sensing and controlling human biomolecules, cells, tissues, and organs, which underpin new frontiers in the biomedical discovery, data, biomanufacturing, and translational sciences. This article reviews what we believe will be the next wave of biomedical engineering (BME) education in support of the biomedical age, what we have termed BME 2.0. BME 2.0 was announced on October 12 2017 at BMES 49 (https://www.bme.jhu.edu/news-events/news/miller-opens-2017-bmes-annual-meeting-with-vision-for-new-bme-era/). We present several principles upon which we believe the BME 2.0 curriculum should be constructed, and from these principles, we describe what view as the foundations that form the next generations of curricula in support of the BME enterprise. The core principles of BME 2.0 education are (a) educate students bilingually, from day 1, in the languages of modern molecular biology and the analytical modeling of complex biological systems; (b) prepare every student to be a biomedical data scientist; (c) build a unique BME community for discovery and innovation via a vertically integrated and convergent learning environment spanning the university and hospital systems; (d) champion an educational culture of inclusive excellence; and (e) codify in the curriculum ongoing discoveries at the frontiers of the discipline, thus ensuring BME 2.0 as a launchpad for training the future leaders of the biotechnology marketplaces. We envision that the BME 2.0 education is the path for providing every student with the training to lead in this new era of engineering the future of medicine in the 21st century

    Morphologic and Metabolic Response to Chronic Hypoxia: the Muscle System

    No full text
    corecore