76 research outputs found

    Phenological overlap of interacting species in a changing climate: an assessment of available approaches

    Get PDF
    Abstract Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of longterm phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of longterm data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climateinduced phenological shifts has focused on terrestrial pairwise resourceconsumer interactions, especially those between plants and insects

    International policy responses and early management of threats posed by the SARS-CoV-2 pandemic to social care

    Get PDF
    Context: People with prior health conditions are susceptible to severe and sometimes fatal outcomes of the novel coronavirus SARS-CoV-2, that causes the disease COVID-19. The protection of the capacity of systems for social care was thus an important consideration for governments in the early stages of the global pandemic. Objectives: This paper reports and discusses the results of a rapid review of international early policy responses for the protection of social care systems after the World Health Organization (WHO) announced that SARS-CoV-2 had evolved into a pandemic. Literature was collected in March 2020. Method: Rapid online review of government responses to the SARS-CoV-2 pandemic using official government statements and press reports from 13 countries. Findings: The analysis of early responses in and about social care to the pandemic suggested an initial focus on avoiding the outbreak of the virus in care homes, with first steps being to limit visitors in these contexts and considering ways to isolate residents with symptoms or a confirmed infection. Responses to protect people receiving social care in their homes and schemes to support informal or family carers were less prominent. Limitations: Only publications in the public domain and in local languages of the 13 countries were considered for this analysis. It is possible that further strategies and responses were not made available to the public and are therefore not included, which limits this article’s scope for analysis. Implications: The findings of this article can support reflection on the trajectory of policy responses to the threats that SARS-CoV-2 poses to social care. They can thereby potentially inform planning and policy responses for enhanced pandemic preparedness and stronger social care systems in the future

    Jet-Powered Molecular Hydrogen Emission from Radio Galaxies

    Get PDF
    H2 pure-rotational emission lines are detected from warm (100-1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z<0.22 observed with the Spitzer IR Spectrograph. The summed H2 0-0 S(0)-S(3) line luminosities are L(H2)=7E38-2E42 erg/s, yielding warm H2 masses up to 2E10 Msun. These radio galaxies, of both FR radio morphological types, help to firmly establish the new class of radio-selected molecular hydrogen emission galaxies (radio MOHEGs). MOHEGs have extremely large H2 to 7.7 micron PAH emission ratios: L(H2)/L(PAH7.7) = 0.04-4, up to a factor 300 greater than the median value for normal star-forming galaxies. In spite of large H2 masses, MOHEGs appear to be inefficient at forming stars, perhaps because the molecular gas is kinematically unsettled and turbulent. Low-luminosity mid-IR continuum emission together with low-ionization emission line spectra indicate low-luminosity AGNs in all but 3 radio MOHEGs. The AGN X-ray emission measured with Chandra is not luminous enough to power the H2 emission from MOHEGs. Nearly all radio MOHEGs belong to clusters or close pairs, including 4 cool core clusters (Perseus, Hydra, A 2052, and A 2199). We suggest that the H2 in radio MOHEGs is delivered in galaxy collisions or cooling flows, then heated by radio jet feedback in the form of kinetic energy dissipation by shocks or cosmic rays.Comment: ApJ in press, 40 pages, 18 figures, 14 table

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    Phylogenetic trait-based analyses of ecological networks.

    No full text
    corecore