117 research outputs found

    Respiration regimes in rivers: Partitioning source-specific respiration from metabolism time series

    Get PDF
    Respiration in streams is controlled by the timing, magnitude, and quality of organic matter (OM) inputs from internal primary production and external fluxes. Here, we estimated the contribution of different OM sources to seasonal, annual, and event-driven characteristics of whole-stream ecosystem respiration (ER) using an inverse modeling framework that accounts for possible time-lags between OM inputs and respiration. We modeled site-specific, dynamic OM stocks contributing to ER: autochthonous OM from gross primary production (GPP); allochthonous OM delivered during flow events; and seasonal pulses of leaf litter. OM stored in the sediment and dissolved organic matter (DOM) transported during baseflow were modeled as a stable stock contributing to baseline respiration. We applied this modeling framework to five streams with different catchment size, climate, and canopy cover, where multi-year time series of ER and environmental variables were available. Overall, the model explained between 53% and 74% of observed ER dynamics. Respiration of autochthonous OM tracked seasonal peaks in GPP in spring or summer. Increases in ER were often associated with high-flow events. Respiration associated with litter inputs was larger in smaller streams. Time lags between leaf inputs and respiration were longer than for other OM sources, likely due to lower biological reactivity. Model estimates of source-specific ER and OM stocks compared well with existing measures of OM stocks, inputs, and respiration or decomposition. Our modeling approach has the potential to expand the scale of comparative analyses of OM dynamics within and among freshwater ecosystems

    Genome-wide association study identifies single-nucleotide polymorphism in KCNB1 associated with left ventricular mass in humans: The HyperGEN Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We conducted a genome-wide association study (GWAS) and validation study for left ventricular (LV) mass in the Family Blood Pressure Program – HyperGEN population. LV mass is a sensitive predictor of cardiovascular mortality and morbidity in all genders, races, and ages. Polymorphisms of candidate genes in diverse pathways have been associated with LV mass. However, subsequent studies have often failed to replicate these associations. Genome-wide association studies have unprecedented power to identify potential genes with modest effects on left LV mass. We describe here a GWAS for LV mass in Caucasians using the Affymetrix GeneChip Human Mapping 100 k Set. Cases (N = 101) and controls (N = 101) were selected from extreme tails of the LV mass index distribution from 906 individuals in the HyperGEN study. Eleven of 12 promising (<it>Q </it>< 0.8) single-nucleotide polymorphisms (SNPs) from the genome-wide study were successfully genotyped using quantitative real time PCR in a validation study.</p> <p>Results</p> <p>Despite the relatively small sample, we identified 12 promising SNPs in the GWAS. Eleven SNPs were successfully genotyped in the validation study of 704 Caucasians and 1467 African Americans; 5 SNPs on chromosomes 5, 12, and 20 were significantly (<it>P </it>≤ 0.05) associated with LV mass after correction for multiple testing. One SNP (rs756529) is intragenic within <it>KCNB1</it>, which is dephosphorylated by calcineurin, a previously reported candidate gene for LV hypertrophy within this population.</p> <p>Conclusion</p> <p>These findings suggest <it>KCNB1 </it>may be involved in the development of LV hypertrophy in humans.</p

    A comparison of echocardiography to invasive measurement in the evaluation of pulmonary arterial hypertension in a rat model

    Get PDF
    Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by progressive elevation in pulmonary artery pressure (PAP) and total pulmonary vascular resistance (TPVR). Recent advances in imaging techniques have allowed the development of new echocardiographic parameters to evaluate disease progression. However, there are no reports comparing the diagnostic performance of these non-invasive parameters to each other and to invasive measurements. Therefore, we investigated the diagnostic yield of echocardiographically derived TPVR and Doppler parameters of PAP in screening and measuring the severity of PAH in a rat model. Serial echocardiographic and invasive measurements were performed at baseline, 21 and 35 days after monocrotaline-induction of PAH. The most challenging echocardiographic derived TPVR measurement had good correlation with the invasive measurement (r = 0.92, P < 0.001) but also more simple and novel parameters of TPVR were found to be useful although the non-invasive TPVR measurement was feasible in only 29% of the studies due to lack of sufficient tricuspid valve regurgitation. However, echocardiographic measures of PAP, pulmonary artery flow acceleration time (PAAT) and deceleration (PAD), were measurable in all animals, and correlated with invasive PAP (r = −0.74 and r = 0.75, P < 0.001 for both). Right ventricular thickness and area correlated with invasive PAP (r = 0.59 and r = 0.64, P < 0.001 for both). Observer variability of the invasive and non-invasive parameters was low except in tissue-Doppler derived isovolumetric relaxation time. These non-invasive parameters may be used to replace invasive measurements in detecting successful disease induction and to complement invasive data in the evaluation of PAH severity in a rat model

    Cytokine Combination Therapy with Erythropoietin and Granulocyte Colony Stimulating Factor in a Porcine Model of Acute Myocardial Infarction

    Get PDF
    PurposeErythropoietin (EPO) and granulocyte colony stimulating factor (GCSF) have generated interest as novel therapies after myocardial infarction (MI), but the effect of combination therapy has not been studied in the large animal model. We investigated the impact of prolonged combination therapy with EPO and GCSF on cardiac function, infarct size, and vascular density after MI in a porcine model.MethodsMI was induced in pigs by a 90&nbsp;min balloon occlusion of the left anterior descending coronary artery. 16 animals were treated with EPO+GCSF, or saline (control group). Cardiac function was assessed by echocardiography and pressure-volume measurements at baseline, 1 and 6&nbsp;weeks post-MI. Histopathology was performed 6&nbsp;weeks post-MI.ResultsAt week 6, EPO+GCSF therapy stabilized left ventricular ejection fraction, (41 ± 1% vs. 33 ± 1%, p &lt; 0.01) and improved diastolic function compared to the control group. Histopathology revealed increased areas of viable myocardium and vascular density in the EPO+GCSF therapy, compared to the control. Despite these encouraging results, in a historical analysis comparing combination therapy with monotherapy with EPO or GCSF, there were no significant additive benefits in the LVEF and volumes overtime using the combination therapy.ConclusionOur findings indicate that EPO+GCSF combination therapy promotes stabilization of cardiac function after acute MI. However, combination therapy does not seem to be superior to monotherapy with either EPO or GCSF

    Glycosaminoglycans and Sialylated Glycans Sequentially Facilitate Merkel Cell Polyomavirus Infectious Entry

    Get PDF
    Merkel cell polyomavirus (MCV or MCPyV) appears to be a causal factor in the development of Merkel cell carcinoma, a rare but highly lethal form of skin cancer. Although recent reports indicate that MCV virions are commonly shed from apparently healthy human skin, the precise cellular tropism of the virus in healthy subjects remains unclear. To begin to explore this question, we set out to identify the cellular receptors or co-receptors required for the infectious entry of MCV. Although several previously studied polyomavirus species have been shown to bind to cell surface sialic acid residues associated with glycolipids or glycoproteins, we found that sialylated glycans are not required for initial attachment of MCV virions to cultured human cell lines. Instead, glycosaminoglycans (GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS), serve as initial attachment receptors during the MCV infectious entry process. Using cell lines deficient in GAG biosynthesis, we found that N-sulfated and/or 6-O-sulfated forms of HS mediate infectious entry of MCV reporter vectors, while CS appears to be dispensable. Intriguingly, although cell lines deficient in sialylated glycans readily bind MCV capsids, the cells are highly resistant to MCV reporter vector-mediated gene transduction. This suggests that sialylated glycans play a post-attachment role in the infectious entry process. Results observed using MCV reporter vectors were confirmed using a novel system for infectious propagation of native MCV virions. Taken together, the findings suggest a model in which MCV infectious entry occurs via initial cell binding mediated primarily by HS, followed by secondary interactions with a sialylated entry co-factor. The study should facilitate the development of inhibitors of MCV infection and help shed light on the infectious entry pathways and cellular tropism of the virus

    Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event
    corecore