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Abstract

Respiration in streams is controlled by the timing, magnitude, and quality of organic matter (OM) inputs
from internal primary production and external fluxes. Here, we estimated the contribution of different OM
sources to seasonal, annual, and event-driven characteristics of whole-stream ecosystem respiration (ER) using
an inverse modeling framework that accounts for possible time-lags between OM inputs and respiration. We
modeled site-specific, dynamic OM stocks contributing to ER: autochthonous OM from gross primary produc-
tion (GPP); allochthonous OM delivered during flow events; and seasonal pulses of leaf litter. OM stored in the
sediment and dissolved organic matter (DOM) transported during baseflow were modeled as a stable stock con-
tributing to baseline respiration. We applied this modeling framework to five streams with different catchment
size, climate, and canopy cover, where multi-year time series of ER and environmental variables were available.
Overall, the model explained between 53% and 74% of observed ER dynamics. Respiration of autochthonous
OM tracked seasonal peaks in GPP in spring or summer. Increases in ER were often associated with high-flow
events. Respiration associated with litter inputs was larger in smaller streams. Time lags between leaf inputs and
respiration were longer than for other OM sources, likely due to lower biological reactivity. Model estimates of
source-specific ER and OM stocks compared well with existing measures of OM stocks, inputs, and respiration or
decomposition. Our modeling approach has the potential to expand the scale of comparative analyses of OM

dynamics within and among freshwater ecosystems.
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Organic matter (OM) is a fundamental energy and nutrient
source supporting aquatic ecosystem structure and functioning
(Tank et al. 2010). Dissolved organic matter (DOM) and particu-
late organic matter (POM) enter streams and rivers from many
sources and are transported and processed throughout river net-
works (Tank et al. 2010). The metabolism of OM during transit
influences many important ecological functions of river net-
works. The balance of OM inputs, storage, transformation,
metabolism, and transport affects OM delivery to downstream
rivers, lakes, estuaries, and oceans (Prairie and Cole 2009), and
fluxes of carbon dioxide and other greenhouse gases to the
atmosphere (Battin et al. 2008). Aerobic respiration of OM is a
major control of dissolved oxygen in river networks. When
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respiration rates exceed oxygen supply via water-atmosphere
exchange, rivers can become hypoxic, stressing aquatic organ-
isms (Mallin et al. 2006). Dissolved oxygen concentrations can
also shape the rates and dynamics of anaerobic processes that
transform nutrients and produce greenhouse gases (Mulholland
et al. 2008; Stanley et al. 2016).

The characterization of stream metabolic regimes links the
magnitude, variability and timing of ecosystem respiration
(ER) and gross primary production (GPP) to the proximate and
ultimate ecosystem controls that shape these dynamics
(Bernhardt et al. 2018). At the ecosystem level, GPP represents
the total amount of carbon fixed by photosynthetic and chemo-
synthetic organisms, while ER quantifies the mineralization of
organic carbon by autotrophic and heterotrophic organisms. The
autotrophic component of these regimes (Bernhardt et al. 2018;
Koenig et al. 2019; Savoy et al. 2019) reflects how GPP and bio-
mass accrual primarily respond to seasonal patterns of light, tem-
perature, flow variation and nutrient availability. The dynamics
of ER partially track patterns in GPP, through autotrophic respi-
ration and heterotrophic respiration of exudates of OM pro-
duced by autotrophs, but also reflect the dynamics of
heterotrophic activity that respond to external OM inputs
(Williams and del Giorgio 2005). ER regimes, the dynamic sum
of respiration of OM derived from different sources, are therefore
likely to be much more spatially and temporally complex than
primary productivity regimes. Indeed, heterotrophic respiration
may be fueled by decomposition of allochthonous OM coming
from adjacent terrestrial ecosystems. Such OM could enter the
stream directly (e.g., through litterfall) or by hydrologic transport
of POM or DOM. Each of these OM stocks that fuel respiration
has a distinct phenology, transport timescale, residence time
within a stream reach, and decomposition dynamics. Biological
reactivity of OM derived from different sources can potentially
vary in time and depend on environmental conditions. Local
abiotic and biotic conditions influence spatiotemporal patterns
of OM metabolism, storage, and downstream transport.
Predicting changes to ER regimes in response to global and local
environmental changes requires empirical and theoretical under-
standing of how the timing and magnitude of OM inputs are
linked to respiratory losses (Rosemond et al. 2015; Follstad Shah
et al. 2017; Kominoski et al. 2018).

The rapid expansion of continuous, long-term solute records
is transforming our understanding of catchment hydrology and
aquatic ecosystems (Rode et al. 2016; Bernhardt et al. 2018). In
isolation, such records can illustrate the timescales of variability
in solute concentration and provide information about trans-
port processes. However, quantitative integration of several
time series is often necessary to estimate rates of hydrologic
and biogeochemical processes. These include methods for par-
titioning metabolic and physical processes from oxygen time
series (Holtgrieve et al. 2010; Grace et al. 2015; Appling
et al. 2018), for the estimation of nutrient transformations from
concurrent observations of nutrient concentrations and meta-
bolic rates (Cohen et al. 2013; Rode et al. 2016; Kominoski

Respiration regimes in rivers

et al. 2018), and for linking metabolism with nutrient and
other ecosystem dynamics (Heffernan and Cohen 2010; Cohen
et al. 2013; O'Donnell and Hotchkiss 2019). The shared insight
of these approaches is that continuous observation allows for
extraction of novel information because of the distinctive time-
scales of processes (e.g., photosynthesis and gas exchange, auto-
trophic assimilation and denitrification) and their differential
relationships with environmental forcing.

Here, our objective was to advance the mechanistic under-
standing of how different OM sources drive whole-stream res-
piration dynamics. Informed by decades of studies of stream
OM dynamics (Tank et al. 2010; Bernhardt et al. 2018), we
developed an inverse modeling approach that combines daily
estimates of GPP and ER with concurrent measures of
(or proxies for) OM inputs. The model uses OM input proxies
and lagged transfer functions to drive accumulation and respi-
ration of dissolved, fine particulate, coarse particulate, and
autotroph-associated OM stocks. These dynamic stocks con-
tribute to overall ER via independent and potentially distinct
respiration rates and temperature sensitivities. We applied this
model to metabolic time series from five streams from a wide
variety of climatic and geologic settings and a range of ecosys-
tem sizes to assess how ER variation can be explained by dif-
ferences in (1) the timing and magnitude of multiple OM
inputs to streams; (2) the residence time and biological reac-
tivity of OM derived from different sources; and (3) the
dynamics of temperature and the potentially different temper-
ature sensitivities of respiration of source-specific OM stocks.
For instance, we predicted that the dominant contribution of
terrestrial OM to stream ER would gradually be replaced by
that of autochthonous aquatic production as channel width
increases (HotchKiss et al. 2015).

Methods

Model
To develop our model, we defined four main possible stocks
of OM that can be respired in a given stream reach:

* A long-term OM stock contained in the streambed sediment
or carried by the baseflow in the form of DOM or POM,
whose respiration is solely controlled by water temperature 7.
It is assumed that this stock, Cy (ML™?), is possibly changing
only at time scales longer than those analyzed herein (up to
10 yr) and therefore it is considered constant for this exercise.

» Stock of terrestrial-derived OM that enters directly into the
stream, for example, through leaf-fall, Crz (M L72).

* OM derived from autochthonous (i.e., produced within the
stream ecosystem) gross primary production, Cgpp (M L™2).
This OM stock includes autochthonous OM that will be
respired by heterotrophs as well as OM that will be respired
directly by the autotrophs themselves.

e OM related to stream discharge, Cq (M L~?). This stock can
be primarily thought of as an allochthonous energy
resource coming from adjacent terrestrial ecosystems to the
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stream via hydrologic transport in the form of both POM
and DOM.

To varying degrees, these stocks represent one or a few dis-
tinct pathways for respiration of OM in a stream or river. Our
modeling approach quantitatively links OM stocks to specific
drivers or pathways, which in some cases (litterfall, GPP) also
correspond to relatively specific OM sources. However, other
components (e.g., flow-associated and long-term OM stock)
likely integrate OM derived from multiple sources and path-
ways (e.g., soil OM, litter leachate, buried or mobilized algal
material). As such, our model provides insight into the sources
of OM that fuel respiration, but does not neatly separate con-
tributions of ultimate sources of OM in a strict biochemical
sense.

To understand the mechanics of our model, let us first
focus on a single, generic carbon stock C(t). Its change over
time depends on the balance between input, I(t) M L2 T 1),
and output fluxes. The output fluxes can be further subdivided
into ER, ER(t) (M L2 T™'), and nonrespiratory losses, L(t) (M
L 2T ") (e.g., export):

dc(t)
=1 —ER(D) ~L(0). (1)

Further assuming that the process is linear (i.e., output fluxes
are proportional to the stock), Eq. 1 reduces to

%:kP(t) —rC(t) —IC(1), (2)

where r (T™') and [ (T"') are the respiration and non-
respiratory loss rates, respectively. The input I(t) is further
assumed to be proportional, via the parameter k, to a mea-
sured proxy P(t). In the following, proxies of OM input P(t)
will be: estimates of leaf litterfall LF(f), gross primary produc-
tion GPP(t), and discharge Q(f). The analytical solution for
the stock C(t), and in turn for the ER, ER(t)=rC(t), can be
obtained from Eq. 2 using the general solution for linear, 1°-
order ordinary differential equations as:

ER(t)=rC(t) = rkroP(t —t)e gy, (3)
0

Equation 3 highlights how the respiration regime depends on
three crucial parameters: k, r, and I. The proposed approach
aims to estimate k, r, and [ based on the observation of ER
time series. However, these three parameters appear in groups
(rk and (r+1)) that prevent the estimation of all
three individually. Indeed, infinite combinations of the
three parameters can result in the same pair of values for
the two parameter groups (i.e., it is a system with
three unknowns and only two equations). We therefore aggre-
gated the parameters in two groups and obtained the follow-
ing formulation:
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ER(t) = rkj P(t—t)e D! gy
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We thus defined two aggregated parameters g and 7 that can
potentially be estimated by measuring the time series of both
the proxy of the input P(t) and the respiration ER(f).
p=kr/(r+1) depends on all three parameters, whereas
t=1/(r+1) on the respiration and non-respiratory loss rates, r
and /. Note that the ratio r/(r+I) represents the fraction of
input that is eventually respired. This particular formulation
allows writing the respiration time series as the convolution
integral (symbol %) between the time series of the OM inputs
that are eventually respired, P(t), and an exponential proba-
bility density function (PDF) with mean value equal to 7,
[ exp(t;7). According to this formulation, the respiration at
time t, ER(¢), can be intuitively seen as the weighted sum
(i.e., the integral) of the respiration of previous inputs
(pP(t—1t')), where the weights (exp(t'/z)dt'/r) represent the
fraction of the input entered at time (t—t') that is respired at
time t. The exponential PDF is thus the distribution of the lag
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Fig. 1. Map of the conterminous Unites States with the location of the
five river reaches selected as case studies for our model, and time series of
Walker Branch data (bottom panel) reported as an illustrative example.
Data for the remaining four sites are reported in the Supporting Informa-
tion (Figs. S5, S9, S13, and S17).
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between input and respiration, and z can be interpreted as the
average lag.

We further assumed that the respiration rate could be tem-
perature dependent according to the temperature sensitivity
parameter 6. The respiration of OM stock C(t) is thus:

0 —t'/t
ER(t) = /39”0*20] pt—t)<at, ()
0 T

where T(t) is the water temperature in Celsius degrees at time
t. Note that when the respiration rate changes with time, the
analytical derivation is slightly different, but the final formula-
tion (Eq. 5) can still be considered an effective approximation
(see Supporting Information Appendix).

The proposed model therefore describes whole-ER at time ¢
as the sum of the respiration of the four OM stocks:

ER(t) = ERg(t) + ERp¢(t) + ERgpp (t) + ERq (1), (6)

where ERg(t) refers to the baseline respiration of the long-term
OM stock Cg. The latter is considered constant and therefore
its respiration depends only on temperature. For the
remaining three components, we applied the rationale
described above. The model thus finally reads:

ER(t) = ERg 2005 "%
) —t'/TiF
B efé”*”J LE(t— ) S——ar’
0 TLF

—t' /7Gep

(7)
TGPP
—t'/7q

Bl JO GPP(t—t)

dt'+

20 (% an €
+ha0y" ZOJ Q(t—t)
0

+u(t),

Q

where ERg 9 is the baseline respiration at 20°C. Each dynamic
OM stock is characterized by its specific # and z parameters.
We assumed that respiration temperature sensitivities could
potentially be different for the different OM stocks given

Table 1. Characteristics of the five case study stream reaches.
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predicted differences in OM reactivity. OM input related to
discharge is modeled as a power-law function of streamflow,
that is, Q(t)™. Such formulation aims at reproducing the
experimental evidence of a power-law relationship between
streamflow discharge and DOM concentration (Raymond and
Saiers 2010; Fasching et al. 2016). To avoid the dependence of
the dimension of f, on the parameter ag, we normalized dis-
charge time series by their average value.

The term u(t) in Eq. 7 represents the error term. As the first
simulations indicated autocorrelated residuals, we decided to
model u(t) as an auto-regressive error of the form

u(t) =p u(t—dt)+e, (8)

where €; =N (0,6?) is an independent, identically distributed
normal variable with standard deviation equal to o. and p is
the autocorrelation coefficient of the error term at the dt time
scale.

Conceptualizing the terms of Eq. 7 as the convolution
between the input of OM that is eventually respired and the
probability distribution of the lag between input and respira-
tion allows considering a set of processes potentially more
complex than those explicitly accounted for in Eq. 1, includ-
ing, for example, more highly resolved transport pathways.
For instance, the delay between leaf-fall in the catchment,
measured by the proxy LF(t), and the moment in which this
OM enters the stream reach could be seen as a series of trans-
port events or pathways, for example, overland movement
followed by fluvial transport from near or far upstream
reaches. The net effect of these processes is a modification of
the lag distribution. Our model takes a parsimonious approach
based on an exponential distribution that effectively captures
the mean lag, while allowing for and potentially pointing to
future extensions that more precisely address specific transport
processes with more complex probability distributions.

Case studies
We selected five streams as case studies for the application
of the model (Fig. 1). Overall, the five case studies span a wide

Walker Branch Black Earth East Canyon Medina Potomac
USGS code — 05406457 10133800 08181500 01608500
Latitude (°) 35.9588 43.1097 40.7596 29.2641 39.4470
Longitude (°) —84.9587 —89.6408 —111.5640 —98.4908 —78.6541
Elevation (m asl) 272 268 1902 134 171
Drainage area (km?) 0.4 29.5 152.7 3366.9 3793.7
Mean discharge (m* s~y 0.01 0.39 1.01 4.00 35.66
Mean water temperature (°C) 13.6 10.5 9.0 239 14.6
Mean leaf fall (m? m=2 yr") 4.6 2.1 1.7 1.9 4.6
Mean GPP (g O, m2yr ) 375 1289 1365 789 1520
Mean ER (g O, m2yr ) 1458 2261 1203 1559 1162
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range of climatic conditions and catchment sizes: one small
headwater (Walker Branch, 0.4 km?), two catchments of inter-
mediate size (Black Earth Creek, 30 km?, East Canyon Creek,
153 km?) and two large river basins (Medina River, 3367 km?,
Potomac South Branch, 3794 km?). Table 1 summarizes the
characteristics of all sites. Mean discharge, and in turn chan-
nel width according to well-established geomorphic relations
(Leopold and Maddock 1953), increased with catchments size
(Table 1). Therefore, analyzing results across catchment sizes
allowed us to investigate also how the dominant controls on
ER shifted with increasing channel width. We selected the five
case study streams using the criterion of having at least four
consecutive years during which all environmental variables
were available. Data from four of our sites were obtained from
a published dataset of stream metabolism estimates produced
as part of the USGS Powell Center working group on stream
metabolism (Appling et al. 2018), StreamPULSE (https://data.
streampulse.org). Moreover, an updated metabolism dataset
was obtained for the Walker Branch study site (Roberts
et al. 2007; Roberts and Mulholland 2007).

Time series of mean daily water temperature T, mean daily
discharge Q, and daily estimates of GPP and ER were taken
from their respective datasets. Several preprocessing steps were
performed on these datasets prior to use. We note that because
we are using existing metabolism time-series datasets,
methods differed between Walker Branch and the four other
streams. All negative estimates of GPP and positive estimates
of ER were set to not available (NA) prior to any preprocessing.
Gaps in the time series for all sites except Walker Branch were
filled by fitting a generalized additive model with both sea-
sonal and trend components to each site-year of data using
the mgcv package (Wood 2006) in R (R Core Team 2017). The
fitted model was then used to fill in missing values which
amounted to 0.2% for Black Earth, 7% for East Canyon, 8%
for Medina, and 7% for Potomac. In addition, we used MODIS
8-d 500 m composite Leaf Area Index (LAI) data (MCD15A2h)
(Myneni et al. 2015) to represent changes in riparian
canopy status. Time series of LAl were downloaded using the
Application for Extracting and Exploring Analysis Ready
Samples (AppEEARS) web service (https://lpdaacsvc.cr.usgs.
gov/appeears/). Noise reduction and smoothing of LAI data
was performed using TIMESAT (Jonsson and Eklundh 2004;
Eklundh and Jonsson 2015) and then a final set of daily LAI
data was created by linearly interpolating missing values.

Finally, we further estimated a proxy of leaf litter flux as
the magnitude of the (negative) time derivative of LAI when
LAI decreased and assigned a value of O to stream leaf litter
when LAI increased. This derivation implicitly assumes that
leaf growth and fall are temporally separated so that the nega-
tive variation of LAI is solely due to leaf fall.

Parameter estimation
The proposed model (Eq. 7) has a total of 14 parameters
(see Table 2) that were estimated in a Bayesian framework.
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Specifically, we sampled the parameter posterior distribution
using the DREAM,; (Ter Braak and Vrugt 2008) implementa-
tion of the Markov Chain Monte Carlo algorithm. We used
uniform marginal prior distributions (ranges in Table 2) for all
parameters but the 6 temperature sensitivity parameters, for
which prior information is available. Specifically, for the 6
parameters we set a Gaussian marginal prior with mean and
standard deviation equal to 1.08 and 0.02, respectively. When
expressed in terms of activation energy, such values corre-
spond to approximately 0.53 and 0.12eV K~ ! (see Gillooly
et al. 2001; Acufia et al. 2008). Instead of estimating the initial
conditions for the three OM stocks in each stream (Crr, Cgpp,
and Cq), we ran a 2-yr long model spin-up period forced with
synthetic data obtained by replicating the 1°' 2 yr of observa-
tions. The model was run at a daily timestep to match the fre-
quency of daily ER estimates. Finally, we sampled 10*
parameter sets from the posterior distribution and evaluated
the different terms of Eq. 7 in order to derive the probability
distribution of the contribution of the four main possible
stocks of OM to ER.

Comparison with literature values

To assess the plausibility of the model results, we compared
modeled respiration of different OM stocks to empirical
values. As detailed above, the observation of the time series of
respiration and of proxies of OM inputs alone does not allow
the individual estimation of the respiration and non-respira-
tory loss rates, r and I, and of the parameter k, but just of the
combined parameters § and 7. Therefore, also the OM stocks
cannot be quantified from the model results (see from Eq. 3
how C(t) depends on the values of k and (r+I)). The same
conclusion can be intuitively achieved noting that the same
respiration flux (dimension: carbon mass per unit area and
time [M L2 T~']) can be obtained by different pairs of respira-
tion rate (dimension: inverse of time [T~']) and carbon stock
(dimension: carbon mass per unit area [M L~?]) which have
the same product. We therefore first compiled literature infor-
mation on empirical range of respiration rates and stocks of
the different source-specific OM. Then, for each OM stock, we
proceeded as follows.

For leaf litter, we used over 1000 field measurements of leaf
litter decay rates synthesized by Follstad Shah et al. (2017) (see
Supporting Information Table S1). However, only a fraction of
the leaf mass loss is directly respired. The literature reports a
wide range for such fraction. For instance, Gulis and Sub-
erkropp (2003) show that, on average, respiration accounted
for 31% and 33% of carbon loss in maple and rhododendron
leaves in a control reach, respectively, and for 56% and 43%
in a nutrient-enriched reach. Elwood et al. (1981) estimated
that microbial respiration accounted for between 33% (control
reach) and 39% (high-level P-enriched reach) of the mass loss
of red oak (Quercus rubra L.) leaves. However, Baldy and
Gessner (1997) found that microbial respiration accounted for
only 17% of alder (Alnus glutinosa [L.] Gaertn.) leaf mass loss in
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Table 2. Estimated model parameters. Median values (0.95 quantile range) of the marginal posterior distribution. Last column reports the parameters averaged

across sites. Last row reports 9: the weighted average of the temperature sensitivity parameters across sources, where the weight corresponds to the relative contri-

bution of each source.

Average

Potomac
0.03 (0.00-0.19)

Medina
2.48 (2.21-2.71)
1.036 (1.029-1.043)
22.78 (0.66-59.04)

East Canyon

1.05 (0.63-1.38)
1.068 (1.026-1.102)
209.15 (140.43-320.36)

Black Earth
1.85 (1.12-2.38)
1.014 (1.000-1.069)
305.42 (218.75-440.17)

Walker Branch
1.64 (1.28-1.97)

Range
[0-10]

Uni
gO,m2d""

1.41
1.04

132.58

ERg,20
Op

1.076 (1.037-1.115)
11.20 (0.64-29.53)

1.002 (1.000-1.014)
114.33 (86.41-145.37)

[1.0-1.2]

[0=1000]

[1.0-1.2]

-2

gO;m

Prr

1.04
138.78

1.075 (1.037-1.115)
126.71 (33.77-195.50)

1.071 (1.038-1.109)

168.99 (43.71-198.85)

1.047 (1.021-1.076) 1.009 (1.000-1.031)
186.87 (139.56-232.41)

1.005 (1.000-1.021)
149.14 (107.15-178.10)

OLr

62.20 (41.16-97.26)

[0-300]
[0-10]

TLF

0.66
1.04
1.70
0.77
1.07

16.11

0.44 (0.39-0.48)

0.44 (0.38-0.50)
1.015 (1.002-1.031)

1.00 (0.89-1.12) 0.80 (0.77-0.84)
1.076 (1.069-1.083)

1.063 (1.043-1.085)

0.62 (0.52-0.77)

Parp

1.025 (1.016-1.034)
1.57 (1.01-2.58)
2.32 (2.00-2.62)

1.012 (1.000-1.043)
6.63 (4.41-9.45)
0.44 (0.23-0.82)

[1.0-1.2]

Ocpp

0.14 (0.01-0.35)
0.11 (0.08-0.16)
1.127 (1.098-1.158)

0.09 (0.00-0.20)
0.11 (0.06-0.22)

1.092 (1.057-1.131)

0.09 (0.01-0.21)
0.89 (0.52-1.90)
1.017 (1.001-1.053)

[0-120]
[0-10]

d

7Gpp
Bq

g0, m2d™!

1.095 (1.081-1.111)
0.11 (0.01-0.25)
0.59 (0.52-0.68)
0.24 (0.21-0.27)
1.37 (1.33-1.42)

1.023 (1.001-1.061)
1.11 (0.70-1.76)
1.12 (0.78-1.53)
0.52 (0.50-0.54)
0.74 (0.71-0.77)

[1.0-1.2]

(0]

0.09 (0.01-0.19)
1.10 (1.03-1.18)
0.27 (0.25-0.30)
1.00 (0.97-1.03)

1.03

0.31 (0.02-1.49)
1.76 (1.40-1.99)
0.50 (0.47-0.51)
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a stream with moderately high nutrients. Overall, previously
published work suggests less than 50% of leaf litter breakdown
is lost as respiration. However, nonrespiratory leaf mass losses,
for example, via leached DOM or transfer to higher trophic
levels, could be further respired with a short turnover time,
and this additional contribution would be included with the
leaf litter-associated respiration in our model. For this reason,
we approximated that 50% of the decay rate contributes to
respiration. We note that this approximation does not enter
directly into the model and serves only to compare
model results with literature values. Starting from the empiri-
cal values of leaf litter decay rate, we derived the probability
distribution of empirical respiration rates using the
above-mentioned approximation. Then, we calculated the
corresponding range of the leaf litter stock necessary to sup-
port the respiration flux estimated by the model. Finally, we
discuss how the estimated range of leaf litter stock compares
with empirical values reported in the literature. Specific esti-
mates of leaf litter standing crop for site Walker Branch (see
Supporting Information Table S1) allowed a more direct com-
parison. In this case, starting from the empirical stock, we cal-
culated the value of the respiration rate needed to support the
respiration flux estimated by the model, and then we com-
pared such value with the probability distribution derived
from literature values.

In the case of the GPP-derived component, we calculated
the ratio of average GPP-derived ER to average GPP
(ERgpp/GPP) and compared it to the distribution of autotro-
phic respiration fraction reported by Hall and Beaulieu (2013).

In our modeling framework, the OM related to discharge
can have very different composition and origin: from DOC
to POC, up to coarse OM material transported downstream
to the stream reach. However, it is reasonable to assume
that respired DOC represents a significant fraction of ER,.
We therefore used a rationale similar to that introduced for
ERir for discharge-derived ER and combined field measure-
ments of DOC uptake velocities (summarized by Mineau
et al. 2016; Supporting Information Table S1) with DOC con-
centrations. We retrieved DOC measurements for four out of
five case studies (Supporting Information Table S1, data for
the East Canyon site were not available). To compare model
results, we needed to estimate the fraction of field measured
uptake velocity that goes into respiration. In their review,
Del Giorgio and Cole (1998) estimated that in riverine eco-
systems bacterial growth efficiency (i.e., the fraction of car-
bon uptake that is not directly respired) ranges from 0.04 to
0.54. Accordingly, the complementary fraction (0.46-0.96) is
respired. However, field measurements of DOC uptake
account not only for bacterial uptake but also for other abi-
otic processes like sediment adsorption. Therefore, the frac-
tion of total DOC uptake that is respired is generally lower
than the respiration fraction of bacterial uptake. We thus
deemed reasonable assuming around 50% of uptake is
respired. The respiration associated with DOC can thus
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Fig. 2. Time series of estimated contributions to ER for the five case studies (a—e). In each panel, the top plot shows the comparison between the mea-
sured ER (circles) and the median value of the modeled ER (shaded area). Bottom plots report how the modeled ER is partitioned into the four contribu-
tions (shaded areas). Also in this case, median results are reported. For the probability distribution of each contribution, the reader is referred to the
Supporting Information (Figs. S3, S7, S11, S15, and S19).

be computed as 50% of the product between DOC concentra- needed to support the respiration flux estimated by the
tion and DOC uptake velocity. To compare model results model. Then, we compared such value with the empirical
with empirical values we proceeded as follows: from the range of uptake velocities compiled from literature (Mineau
DOC measured at the sites, we calculated the uptake velocity et al. 2016).
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We stress that model results are not affected by the assump-
tions of a respiratory fraction of 50% for both LF decay and
DOC uptake, which are instead only used after the model
application to provide an order of magnitude of the estimated
fluxes against which model results are compared in order to
check their plausibility.

Results

The developed OM respiration model was able to reproduce
seasonal patterns of ER as well as fluctuations occurring at
shorter time scales. Time series of the estimated contribution
of the different OM stocks are shown in Fig. 2. This figure
reports median results, for an appreciation of the uncertainty
related to each component the reader is referred to the
Supporting Information (Figs. S3, S7, S11, S15, and S19). In
addition, the Supporting Information reports the comparison
between the proxies used to approximate the OM inputs
(namely, Q(t), GPP(t), and LF(t)) and the corresponding ER
contributions (Figs. S4, S8, S12, S16, and S20). The average
contribution of the four different OM stocks to the total ER is
summarized in Fig. 3 and Supporting Information Table S2.
General patterns suggest that leaf litter contributions to ER
decrease with catchment size while GPP contributions gener-
ally increase. Although the Bayesian method used does not
maximize the coefficient of determination, we reported the
resulting values in Supporting Information Table S2 to provide
an easily interpretable metric of the proportion of data vari-
ance explained by the model. R* ranged between 53% for
Walker Branch and 74% for Black Earth and East Canyon.
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Besides partitioning ER among OM stocks, the estimated
parameters can provide predictions about the reactivity of the
different OM stocks, their turnover time and their temperature
sensitivity. Statistics of the parameter posterior distribution
are reported in Table 2. The shape of the marginal distribu-
tions for each parameter and site is reported in the Supporting
Information (Figs. S2, S6, S10, S14, and S18). Most of the mar-
ginal probability density functions converged to peaked distri-
butions, except when a parameter was estimated to approach
the zero physical boundary. This occurred when: (1) a contri-
bution was estimated to be almost negligible and thus the
parameter controlling the average respiration tended to zero
(ERp 20 for Potomac, iy for Medina and Potomac); or (2) the
lag between input and respiration was estimated to be very
short (zgpp close to zero for Black Earth, East Canyon and
Medina, zq for Medina and Potomac). Moreover, nonpeaked
distribution occurred when temperature sensitivity was esti-
mated to be low and thus 6 parameters tended to the unity
lower boundary (all 6 parameters for Walker Branch, 6y for
Black Earth, 6;r for East Canyon).

The lag parameters 7 reflect the average time elapsed
between the inputs of OM and their respiration. The average
7 across sites was 138d (Table 2), suggesting a long lag
between leaf litter fall in the catchment (as measured by the
proxy LF(t)) and its respiration in the focus reach. For GPP-
related respiration, the time lag was much shorter, around 1 d
or shorter, suggesting that autochthonous OM was respired
within one or few days, with the exception of Walker Branch
site where the median zgpp Was about 6.63 d. Also, respiration
of OM stocks related to discharge had a very fast turnover,
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Fig. 3. Average annual ER contributions for the five case studies. (a) Median (bars) and 0.95 quantile range (error bars). (b) Same as (a) but normalized

with respect to the total ER.
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except for the site Black Earth, where median 7, was estimated
to be about 79d.

Compared to other parameters, temperature sensitivity of
respiration exhibited less variability among the different OM
stocks and among sites. The average (weighted according to
the source contribution) temperature sensitivity 8 of the five
sites was bracketed in the range (1.03-1.05), with the excep-
tion of the site Walker Branch, for which 8 =1.01 (Table 2).

Modeled ER compared well with available literature values.
The contribution of leaf litter respiration to ER (with dimen-
sion [M L72 T71]) can be thought of as the product between a
respiration rate (T™!) and a stock of leaf litter (M L72) in the
streambed. However, as discussed above, the model cannot
estimate the OM stock and respiration rate separately, only
their product. Therefore, the slopes in Fig. 4a represent the
paired magnitudes of respiration rate (expressed as d~!) and
average leaf litter stock (expressed as g Cm 2, assuming a
1 : 1 molar ratio between oxygen and carbon) that would
result in the leaf litter-associated respiration estimated by the
model. Such values are then compared with the probability
distribution of leaf litter respiration rates from empirical stud-
ies (shaded area in Fig. 4a). For the most probable rates,
the estimated average leaf litter stock ranges between about
2 g C m2 for the Potomac up to about 200 g C m 2 for
Walker Branch. We could gather direct observations on leaf
litter dynamics only for the site Walker Branch. The observed
average leaf litter stock of 38 g C m~? (Supporting Information
Table S1) corresponds to a respiration rate of around

Respiration regimes in rivers

0.012 d~', a value which sits close to the upper bound of the
interquantile range of the empirical respiration rates (Fig. 4a).

We then compared the ratio between the estimated average
GPP-related respiration and the average GPP, with the autotro-
phic respiration fraction (ARf) (Hall and Beaulieu 2013)
(Fig. 4b). The ratio for the five case studies lies on the upper
part of the ARf distribution.

Finally, Fig. 4c shows the analysis of the estimated
discharge-related respiration. The analysis follows the same
rationale of Fig. 4a showing the paired magnitudes of uptake
velocity and average DOC concentration that would amount
to the ERy estimated by the model (also in this case a
1 : 1 molar ratio between oxygen and carbon was assumed).
The shaded area reports the range of uptake velocities derived
from the ambient DOC uptake velocities corrected for biologi-
cal availability (i.e., reactivity) as reported by Mineau et al.
(2016). The uptake velocities corresponding to the empirical
DOC concentrations (Supporting Information Table S1) lay
within the empirical range except for the Medina site, which
has the highest DOC concentration (3.6 g m ®) but a rela-
tively low estimate of ERq (Fig. 4¢).

Discussion

Our study demonstrates that stream and river respiration
regimes reflect the temporal dynamics of OM derived from
distinct sources, namely leaf litter inputs, in situ autotrophic
production (GPP), and flow-related OM inputs from the
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Fig. 4. Comparison between model estimates and literature values. (a) Leaf litter contribution: solid lines show the paired magnitudes of respiration rate
and average stock of leaf litter that would result in the estimated leaf litter contribution to ER. Shaded areas show the 50% (darker gray) and 90% (lighter
gray) quantile range of literature values of leaf litter respiration rates. The red circle shows the average leaf litter stock observed in Walker Branch
(Supporting Information Table S1, assuming a 50% carbon fraction in AFDM; leaf litter stock data were not available for the other sites). (b) GPP contri-
bution: ratio between average ERcpp and average GPP (circles) compared to the distribution of autotrophic respiration fraction (box blot) (Hall and
Beaulieu 2013). (c) Discharge contribution: solid lines show the paired magnitudes of DOC uptake velocity and average DOC concentration that would
result in the estimated contribution of discharge-associated ER. The shaded area represents the range of uptake velocities retrieved from Mineau et al.
(2016). Red circles show the observed average DOC concentration, when available (Supporting Information Table ST1).
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catchment. A combination of sediment OM and baseflow-
associated OM delivery supported baseline ER after accounting
for the more dynamic OM stocks contributing to ER. Using an
inverse modeling approach that attributes ER regimes compo-
nents to different OM sources, we explained a substantial frac-
tion (range 53-74%) of variance in multi-year ER time series.
We also showed that high-frequency, multi-year time-series
data contain enough information to partition the contribu-
tion of OM derived from different sources to ER, and to quan-
tifty the lags between various OM inputs and their
decomposition.

One important feature of our approach is that the use of
forcing time series (litterfall, GPP, discharge, temperature)
reduces the need for investigators to specify a priori the size
and reactivity of OM stocks. Instead, estimates of these charac-
teristics can be extracted from the joint dynamics of respira-
tion and its drivers. The primary limitations of this approach
are that (1) we do not obtain independent estimates of OM
stock sizes and source-specific respiration rates, and (2) tempo-
ral covariation among proxies used for OM inputs and envi-
ronmental variables could cause mis-attribution of respiration
across OM compartments. For instance, in the case of correla-
tion between temperature and discharge, typical of glacier-fed
streams, the model could exchange respiration related to dis-
charge with an enhanced temperature sensitivity for the base-
line respiration, or vice versa. Correlation between GPP and
temperature, or between discharge and litterfall, could gener-
ate similar mis-attributions. To alleviate this potential prob-
lem, it is advisable to gather information to better constrain
the prior parameter distribution. Finally, the small autocorrela-
tion in the model residuals (average p =0.36, Table 2) suggests
that there could be some processes regulating ER that are not
accounted for by the model. While these limitations should
caution against overconfidence in exact values derived from
our model results, they should also provide new motivation,
direction, and context for mechanistic studies that integrate
measurements and models of OM storage, metabolism, and
transport in streams (Webster and Meyer 1997; Duarte and
Prairie 2005; Tank et al. 2010).

Respiration dynamics

Our modeling approach inferred patterns of respiration
over time, among rivers, and across OM sources that agree
with our current understanding of variation in the timing of
OM delivery, the reactivity of different OM stocks (Marn-
Spiotta et al. 2014; Lehmann and Kleber 2015), and their
changing importance with river width. The contributions of
OM derived from different sources to ER were generally within
reasonable ranges given what is known about the range of
OM stock sizes and respiration rates of different forms and
sources of OM. For some sites and sources, these estimates are
in good agreement; in other cases, our results suggest a need
to better constrain parameters to reduce uncertainty in how
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respiration is partitioned among different OM stocks, as
detailed in the following.

Leaf litter contribution to ER monotonically decreased with
catchment size and channel width. This feature was expected
because direct leaf litterfall per unit of streambed area
decreases with stream width; and input from the upstream
network attenuates going downstream because of the concur-
rent degradation (Vannote et al. 1980). For the five study sites
our model predicted that average leaf litter standing stocks of
2 to 200 g C m 2 (Fig. 4a) were needed to maintain the esti-
mated leaf litter contribution to ER. This range is comparable
to results from field studies in temperate streams reporting leaf
litter standing stocks of as low as 4 g of ash free dry mass
(AFDM) m™2 (Sycamore Creek, Sonoran Desert, Wallace
et al. 1999) and up to 450 g AFDM m 2 (deciduous forest
streams in Portugal, Graca and Canhoto 2006). Direct observa-
tion in one of the study sites, Walker Branch, allowed a more
refined assessment of the model results and confirmed that
model estimates of leaf litter-related respiration for this site are
reasonable. Lags between leaf litter and respiration ranged
from 62 to 187 d, supporting the persistence of at least a frac-
tion of the leaf litter-derived OM fueling ER in many sites.
Walker Branch analyses allowed a further appraisal of the
model estimates: temporal patterns of leaf litter-derived respi-
ration (Fig. 2; Supporting Information Fig. S4) are in very good
agreement with the annual pattern of leaf litter standing stock
reported for the same site in fig. 1b of Suberkropp (1997),
which peaks in November and maintains a residual stock
throughout the summer.

Across study sites, the fraction of respiration related to
autochthonous GPP aligned with the magnitude of mean GPP
and was lowest in the smallest catchment (Walker Branch)
and highest in the largest one (Potomac). Lags for GPP-
supported respiration were short, consistent with the known
high reactivity of autochthonous OM (Myklestad 1995; Descy
et al. 2002; Guenet et al. 2010) and rapid turnover of newly
fixed GPP (Hotchkiss and Hall Jr. 2015). The ratio of GPP-
related respiration to GPP ranged from 0.43 to 0.68 and was
similar, or slightly higher than the autotrophic respiration
fraction estimated with other methods by Hall and Beaulieu
(2013). It is important to mention that the analysis by Hall
and Beaulieu (2013) refers to autotrophic respiration and
closely associated heterotrophs; our model instead has a
broader definition of GPP-derived respiration. Moreover, Hall
and Beaulieu (2013) focused on a daily timescale, while our
model accounted for possible longer delay between OM pro-
duction and respiration. It was thus expected that our esti-
mates could be biased toward higher values than those
estimated by the autotrophic respiration fraction. Like most
other approaches, our model does not allow us to differenti-
ate respiration by autotrophs from heterotrophs, but future
versions of our modeling framework could be developed to
test these lingering unknowns in whole-stream carbon
budgets.
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Hydrologic drivers can affect ER through different path-
ways and mechanisms, and such variability was reflected also
in our estimates of discharge-driven respiration across study
sites. Walker Branch, Medina, and Potomac River had similar
patterns with a short lag 79 and exponents aq in the range
0.6-1.12. The latter is in agreement with the power-law rela-
tionships typically found between DOC and discharge
(Raymond and Saiers 2010; Fasching et al. 2014). The combi-
nation of these two parameters suggests that in these three
sites discharge-related ER is dominated by respiration of labile
DOC delivered to the stream during high-flow events
(Demars 2019). Indeed, when comparing observations of DOC
concentrations and empirical DOC uptake velocities, our
model estimates agreed well for Walker Branch and Potomac
(Fig. 4c). On the contrary, the high DOC concentration
observed in Medina does not seem compatible with our esti-
mates of discharge-related ER. These apparently contradictory
results could be reconciled noting that, in our framework, the
baseline respiration includes also the contribution of respira-
tion of DOM transported during baseflow. Medina had a com-
paratively high baseline contribution that could account also
for respiration of DOC. However, further empirical evidence
on the site DOC dynamics and composition would be needed
to confirm this interpretation. Also, East Canyon had a behav-
ior similar to the three sites described above, although with a
slightly higher aq. However, ER, had an overall a minimal
contribution (2%) which could hamper a reliable parameter
identification. Moreover, we could not retrieve direct observa-
tions of DOC concentration for this site. These two factors
restrained us from further elaborate on this result. Black Earth
Creek showed instead very different dynamics characterized
by high aq and long lags 7o (see also Supporting Information
Fig. S8). Such strong non-linear response suggests that only
few large flow events led to an increased transport into the
stream of OM characterized by low reactivity that could sus-
tain, although with an overall small contribution (18%), the
ER for long periods. Such behavior suggests a more POC-
dominated response to flow events; however, also in this case
further empirical evidence would be needed.

Baseline respiration has several potential OM-derived sources
including respiration of wood and other coarse particulate
organic material, fine particulates stored on the streambed and
in hyporheic sediments, and respiration of DOM delivered
under baseflow conditions. Without more information about
these more temporally stable OM stocks, it is difficult to make
predictions across sites. We did find that temporally-stable res-
piration made very different contributions across sites. Potomac
had no baseline contribution. However, this is reasonable given
that ER was very low in winter, and discharge related respira-
tion contributed the most to this stream. In contrast to the
Potomac case study, the other stream case studies had high
baseline and low discharge contributions to ER.

We did not have any a priori expectation regarding the var-
iation of temperature sensitivity parameters 0 and we could
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not find a posteriori any systematic changes of such parame-
ters, across both OM sources and sites. We note that some
parameters were difficult to identify and the marginal poste-
rior distribution tended toward the imposed lower boundary
of 1 (i.e., no sensitivity to temperature). This occurred in two
study sites for the baseline respiration temperature sensitivity
(Walker Branch and Black Earth). A possible explanation is
that we used streamflow water temperature; however, if a large
fraction of the estimated baseline respiration occurs in the
hyporheic zone, organisms therein experience a temperature
signal more damped than the one of the water column
(Wondzell 2011). This mismatch would be accommodated in
the model by estimating an apparently lower temperature sen-
sitivity. Therefore, 0 close to one could cautiously be inter-
preted as a clue that the bulk on the baseline respiration
occurs in deeper sediments rather than in the benthic surface
and the water column. Moreover, we found that all § parame-
ters tended toward 1 for Walker Branch. In this regard, it
should be noted that this site is the only one that showed an
ER inversely correlated with temperature, with higher respira-
tion during winter. Therefore, irrespective of the proposed
model details, any kind of regression model would likely tend
to minimize a positive effect of temperature on ER. A more
informative and site-specific prior distribution for this parame-
ter would be needed to better differentiate the role of timing
of OM stocks and temperature in shaping the seasonal pat-
terns of ER.

Time-series approaches and the mechanistic understanding
of river network respiration

Leveraging long-term and high-frequency measurements of
dissolved oxygen, temperature, and remotely sensed ancillary
variables can provide useful information on reach-scale OM
mass balance and respiration dynamics in streams and rivers,
and can thus constitute an effective substitute or companion
to traditional experimental and field approaches to study OM
dynamics. For the Walker Branch case study site, we showed
that concomitant availability of both long-term time-series
and classical OM budget and experimental studies allowed a
more in-depth assessment of the reliability of model results
and its potential limitations. Therefore, the modeling and data
collection approaches should be seen as complementary tools
that can synergistically improve our ability to understand the
functioning of stream ecosystems. Further development of the
model should thus prioritize (1) expanding field data collec-
tion in sites that already have long time series of metabolism
and/or (2) deploying high-frequency sensors in reaches where
OM budgets already exist.

Our modeling framework focuses on a single reach and sub-
sumes the effects of transport and transformation processes
occurring in the upstream catchment in the r lag parameters.
We thus adopted the traditional “field of view” of stream eco-
system research: the reach. However, an emerging consensus
is arising in the scientific community about the need to adopt
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a network perspective to fully appreciate and predict ecosys-
tem processes (Koenig et al. 2019; Segatto et al. 2021;
Wollheim et al. 2022) and biogeochemical fluxes (Raymond
et al. 2016; Bertuzzo et al. 2017; Helton et al. 2018). A possible
pathway to model development is thus the integration of a
more mechanistic description of OM inputs and transport
along the river network. A network-scale framework should
couple a hydrologic model to reconstruct lateral flows with a
hydraulic model to simulate flow conditions and related trans-
port. Moreover, it could exploit distributed information, possi-
bly acquired also through remote sensing, about land cover
and land use to predict inputs and fates of DOM (see Grandi
and Bertuzzo 2022) and leaf litter along the network. The inte-
gration of these modeling components would better constrain
the estimation of OM stocks (e.g., for leaf litter and DOC) and
separate it from that of the corresponding respiration rate.
Indeed, the inability to separate these two factors is one of the
main limitations of the current model formulation. To facili-
tate this kind of study, it is important to stress the need to
design experimental campaigns with a network “field of
view,” for instance with the deployment of several measure-
ment stations nested within the same catchment (see Ulseth
et al. 2018; Segatto et al. 2020).

One critical need in aquatic ecology is to improve our
understanding of the links between ecosystem processes and
biota (Marcarelli et al. 2011; Ruegg et al. 2021). Because our
approach converts metabolic fluxes to dynamic stocks, it pro-
vides a new tool that can link the phenology of biota to meta-
bolic regimes, and provide meaningful proxies for dynamics
of OM resource availability for population, community, and
food web research. Because our approach infers processes from
dynamic time series, its outputs could be used to forecast how
respiration regimes will respond to changing environmental
drivers such as increasing temperature (Kaushal et al. 2010;
Song et al. 2018), modified flow regimes, and changes in OM
and nutrient availability (Rosemond et al. 2015; Kominoski
et al. 2018). The magnitude and phenology of stream metabo-
lism will be determined by the interactions between OM, biota
phenology and global changes in temperature and precipita-
tion. Hydrologic- and temperature-driven environmental
changes and disturbance events can determine the quantity,
quality, and phenology of basal resources (e.g., detrital or algal
OM) as well as their use by microbes (Baines et al. 2000;
Erlandsson et al. 2008) and overall effects on stream autotrophic
and heterotrophic processes (Kominoski and Rosemond 2012;
Rosemond et al. 2015; Bernhardt et al. 2018).

What controls respiration rates in ecosystems? What is the
fate of algal and terrestrial-derived OM as it travels through
river networks and food webs? How might future environmen-
tal changes alter the carbon budgets and respiration regimes
of streams, rivers, and river networks? As we find ourselves in
an era of ecology supported by in situ sensors, remote sensing
and other large datasets, mechanistic modeling frameworks to
characterize and predict whole-ecosystem processes will play a
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critical role in knowledge advancement and ecosystem man-
agement. Our model characterizing the respiration regimes of
five case study sites was validated by existing datasets, pro-
vided new insights into the reactivity and respiration of differ-
ent OM stocks across streams and rivers, and offers numerous
opportunities to advance ecosystem science in the future.

Data Availability Statement

No new data were generated for this study. Data used for all
sites except Walker Branch are available at https://data.
streampulse.org. Preprocessed input data and model codes are
available at the following public repository: https://doi.org/10.
5281/zenodo.7056615
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