395 research outputs found

    Informed consent in veterinary medicine: ethical implications for the profession and the animal 'patient'

    Get PDF
    Informed consent processes are a vital component of both human and veterinary medicine. Current practice encourages veterinarians to learn from insights in the human medical field about how best to achieve valid consent. However, drawing on published literature in veterinary and medical ethics, this paper identifies considerable differences between the purposes of veterinary and human medical consent. Crucially, it is argued that the legal status of animal patients as ‘property’ has implications for the ethical role of veterinary informed consent and the protection of the animal ‘patient’. It is suggested that veterinary informed consent should be viewed as an ethical pivot point where the multiple responsibilities of a veterinary professional converge. In practice, balancing these responsibilities creates considerable ethical challenges. As an example, the paper discusses the renewed call for UK veterinarians to make animal welfare their first priority; we predict that this imperative may increasingly cause veterinary informed consent to become an ethical pressure point due to tensions caused by the often conflicting interests of animals, owners and the veterinary profession. In conclusion, the paper argues that whilst gaining informed consent can often be presented as a robust ethical justification in human medicine, the same cannot be said in veterinary medicine. If the veterinary profession wish to prioritise animal welfare, there is an urgent need to re-evaluate the nature of authority gained through owner informed consent and to consider whether animal patients might need to be better protected outside the consent process in certain circumstances

    Experience with an online prospective database on adolescent idiopathic scoliosis: development and implementation

    Get PDF
    Considerable variability exists in the surgical treatment and outcomes of adolescent idiopathic scoliosis (AIS). This is due to the lack of evidence-based treatment guidelines and outcome measures. Although clinical trials have been extolled as the highest form of evidence for evaluating treatment efficacy, the disadvantage of cost, time, lack of feasibility, and ethical considerations indicate a need for a new paradigm for evidence based research in this spinal deformity. High quality clinical databases offer an alternative approach for evidence-based research in medicine. So, we developed and established Scolisoft, an international, multidimensional and relational database designed to be a repository of surgical cases for AIS, and an active vehicle for standardized surgical information in a format that would permit qualitative and quantitative research and analysis. Here, we describe and discuss the utility of Scolisoft as a new paradigm for evidence-based research on AIS. Scolisoft was developed using dot.net platform and SQL server from Microsoft. All data is deidentified to protect patient privacy. Scolisoft can be accessed at www.scolisoft.org. Collection of high quality data on surgical cases of AIS is a priority and processes continue to improve the database quality. The database currently has 67 registered users from 21 countries. To date, Scolisoft has 200 detailed surgical cases with pre, post, and follow up data. Scolisoft provides a structured process and practical information for surgeons to benchmark their treatment methods against other like treatments. Scolisoft is multifaceted and its use extends to education of health care providers in training, patients, ability to mine important data to stimulate research and quality improvement initiatives of healthcare organizations

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Development, Problem Behavior, and Quality of Life in a Population Based Sample of Eight-Year-Old Children with Down Syndrome

    Get PDF
    OBJECTIVE: Children with Down syndrome (DS) have delayed psychomotor development. We investigated levels of development, problem behavior, and Health-Related Quality of Life (HRQoL) in a population sample of Dutch eight-year-old children with DS. Developmental outcomes were compared with normative data of eight-year-old children from the general population. METHOD: Over a three-year-period all parents with an eight-year-old child with DS were approached by the national parent organization. Developmental skills were assessed by means of the McCarthy Scales of Children's Ability. To measure emotional and behavioral problems we used the Child Behavior Checklist. HRQoL was assessed with the TNO-AZL Children's Quality of Life questionnaire. Analyses of variance were applied to compare groups. RESULTS: A total of 337 children participated. Mean developmental age was substantially lower than mean calendar age (3.9 years, SD 0.87 and 8.1 years, SD 0.15 respectively). Mean developmental age was significantly lower among boys than girls (3.6 (SD 0.85) and 4.2 years (SD 0.82) respectively; p<0.001). Compared with the general population, children with DS had more emotional and behavioral problems (p<0.001). However on the anxious/depressed scale, they scored significantly more favorably (p<0.001). Significantly lower HRQoL scores for the scales gross motor skills, autonomy, social functioning and cognitive functioning were found (p-values<0.001). Hardly any differences were observed for the scales physical complaints, positive and negative emotions. CONCLUSION: Eight-year-old children with DS have an average developmental delay of four years, more often have emotional and behavioral problems, and have a less favorable HRQoL compared with children from the general population
    corecore