53 research outputs found

    High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics

    Get PDF
    Ultrafast Electron Microscopy (UEM) has been demonstrated to be an effective table-top technique for imaging the temporally-evolving dynamics of matter with subparticle spatial resolution on the time scale of atomic motion. However, imaging the faster motion of electron dynamics in real time has remained beyond reach. Here, we demonstrate more than an order of magnitude (16 times) enhancement in the typical temporal resolution of UEM by generating isolated 30 fs electron pulses, accelerated at 200 keV, via the optical-gating approach, with sufficient intensity for efficiently probing the electronic dynamics of matter. Moreover, we investigate the feasibility of attosecond optical gating to generate isolated subfemtosecond electron pulses, attaining the desired temporal resolution in electron microscopy for establishing the Attomicroscopy to allow the imaging of electron motion in the act.Comment: 19 Pages, 4 Figure

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Latin American Consensus: Children Born Small for Gestational Age

    Get PDF
    72-87Cuatrimestra

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Commissioning of the CMS high-level trigger with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS High-Level Trigger (HLT) is responsible for ensuring that data samples with potentially interesting events are recorded with high efficiency and good quality. This paper gives an overview of the HLT and focuses on its commissioning using cosmic rays. The selection of triggers that were deployed is presented and the online grouping of triggered events into streams and primary datasets is discussed. Tools for online and offline data quality monitoring for the HLT are described, and the operational performance of the muon HLT algorithms is reviewed. The average time taken for the HLT selection and its dependence on detector and operating conditions are presented. The HLT performed reliably and helped provide a large dataset. This dataset has proven to be invaluable for understanding the performance of the trigger and the CMS experiment as a whole.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe
    • …
    corecore