9,936 research outputs found
Genome-Wide Survey of MicroRNA - Transcription Factor Feed-Forward Regulatory Circuits in Human
In this work, we describe a computational framework for the genome-wide
identification and characterization of mixed
transcriptional/post-transcriptional regulatory circuits in humans. We
concentrated in particular on feed-forward loops (FFL), in which a master
transcription factor regulates a microRNA, and together with it, a set of joint
target protein coding genes. The circuits were assembled with a two step
procedure. We first constructed separately the transcriptional and
post-transcriptional components of the human regulatory network by looking for
conserved over-represented motifs in human and mouse promoters, and 3'-UTRs.
Then, we combined the two subnetworks looking for mixed feed-forward regulatory
interactions, finding a total of 638 putative (merged) FFLs. In order to
investigate their biological relevance, we filtered these circuits using three
selection criteria: (I) GeneOntology enrichment among the joint targets of the
FFL, (II) independent computational evidence for the regulatory interactions of
the FFL, extracted from external databases, and (III) relevance of the FFL in
cancer. Most of the selected FFLs seem to be involved in various aspects of
organism development and differentiation. We finally discuss a few of the most
interesting cases in detail.Comment: 51 pages, 5 figures, 4 tables. Supporting information included.
Accepted for publication in Molecular BioSystem
Counterterms vs. Dualities
We investigate and clarify the mutual compatibility of the higher order
corrections arising in supergravity and string theory effective actions and the
non-linear duality symmetries of these theories. Starting from a conventional
tree level action leading to duality invariant equations of motion, we show how
to accommodate duality invariant counterterms given as functionals of both
electric and magnetic fields in a perturbative expansion, and to deduce from
them a non-polynomial bona fide action satisfying the Gaillard-Zumino
constraint. There exists a corresponding consistency constraint in the
non-covariant Henneaux-Teitelboim formalism which ensures that one can always
restore diffeomorphism invariance by perturbatively solving this functional
identity. We illustrate how this procedure works for the R^2 \nabla F \nabla F
and F^4 counterterms in Maxwell theory.Comment: 15 page
Crossings, Motzkin paths and Moments
Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain
-analogues of Laguerre and Charlier polynomials. The moments of these
orthogonal polynomials have combinatorial models in terms of crossings in
permutations and set partitions. The aim of this article is to prove simple
formulas for the moments of the -Laguerre and the -Charlier polynomials,
in the style of the Touchard-Riordan formula (which gives the moments of some
-Hermite polynomials, and also the distribution of crossings in matchings).
Our method mainly consists in the enumeration of weighted Motzkin paths, which
are naturally associated with the moments. Some steps are bijective, in
particular we describe a decomposition of paths which generalises a previous
construction of Penaud for the case of the Touchard-Riordan formula. There are
also some non-bijective steps using basic hypergeometric series, and continued
fractions or, alternatively, functional equations.Comment: 21 page
Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs
Non-conding RNAs play a key role in the post-transcriptional regulation of
mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact
with their target RNAs through protein-mediated, sequence-specific binding,
giving rise to extended and highly heterogeneous miRNA-RNA interaction
networks. Within such networks, competition to bind miRNAs can generate an
effective positive coupling between their targets. Competing endogenous RNAs
(ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk.
Albeit potentially weak, ceRNA interactions can occur both dynamically,
affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA
networks as a whole can be implicated in the composition of the cell's
proteome. Many features of ceRNA interactions, including the conditions under
which they become significant, can be unraveled by mathematical and in silico
models. We review the understanding of the ceRNA effect obtained within such
frameworks, focusing on the methods employed to quantify it, its role in the
processing of gene expression noise, and how network topology can determine its
reach.Comment: review article, 29 pages, 7 figure
The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars
We report high-resolution spectroscopy of 125 field stars previously observed
as part of the Sloan Digital Sky Survey and its program for Galactic studies,
the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These
spectra are used to measure radial velocities and to derive atmospheric
parameters, which we compare with those reported by the SEGUE Stellar Parameter
Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS
ugriz photometry and low-resolution (R = 2000) spectroscopy. For F- and G-type
stars observed with high signal-to-noise ratios (S/N), we empirically determine
the typical random uncertainties in the radial velocities, effective
temperatures, surface gravities, and metallicities delivered by the SSPP to be
2.4 km/s, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic
uncertainties of a similar magnitude in the effective temperatures and
metallicities. We estimate random errors for lower S/N spectra based on
numerical simulations.Comment: 37 pages, 6 tables, 6 figures, submitted to the Astronomical Journa
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−
A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL
- …
