74 research outputs found

    The little flavons

    Full text link
    Fermion masses and mixing matrices can be described in terms of spontaneously broken (global or gauge) flavor symmetries. We propose a little-Higgs inspired scenario in which an SU(2)xU(1) gauge flavor symmetry is spontaneously (and completely) broken by the vacuum of the dynamically induced potential for two scalar doublets (the flavons) which are pseudo-Goldstone bosons remaining after the spontaneous breaking--at a scale between 10 and 100 TeV--of an approximate SU(6) global symmetry. The vacuum expectation values of the flavons give rise to the texture in the fermion mass matrices. We discuss in detail the case of leptons. Light-neutrino masses arise by means of a see-saw-like mechanism that takes place at the same scale at which the SU(6) global symmetry is broken. We show that without any fine tuning of the parameters the experimental values of the charged-lepton masses,the neutrino square mass differences and the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix are reproduced.Comment: 13 pages, revTeX4. Version to be published in PR

    Connecting Leptogenesis to CP Violation in Neutrino Mixings in a Tri-bimaximal Mixing model

    Get PDF
    We show that in a recently proposed S3S_3 model for tri-bimaximal mixing pattern for neutrinos, CP violating phases in neutrino mixings are directly responsible for lepton asymmetry ϵ\epsilon_\ell. In the exact tri-bimaximal limit, ϵ\epsilon_\ell is proportional to one of the Majorana phases whereas in the presence of small deviations from tri-bimaximal pattern, there are two contributions, one being proportional to the Dirac phase and the other to one of the two Majorana phases. In the second case, θ13\theta_{13} is nonzero and correlated with the deviation from maximal atmospheric mixing.Comment: 14 pages; no figures; references update

    Fermion Masses and Mixings in the Little Flavon Model

    Full text link
    We present a complete analysis of the fermion masses and mixing matrices in the framework of the little flavon model. In this model textures are generated by coupling the fermions to scalar fields, the little flavons, that are pseudo-Goldstone bosons of the breaking of a global SU(6) symmetry. The Yukawa couplings arise from the vacuum expectation values of the flavon fields, their sizes controlled by a potential a la Coleman-Weinberg. Quark and lepton mass hierarchies and mixing angles are accomodated within the effective approach in a natural manner.Comment: 11 pages, RevTeX4, version to appear on Phys. Rev.

    Lepton flavor violation decays τμP1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τμP1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π\pi^+\pi^-, K+KK^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure

    A Phenomenological Analysis of Gluon Mass Effects in Inclusive Radiative Decays of the J/ψ\rm{J/\psi} and $\Upsilon

    Full text link
    The shapes of the inclusive photon spectra in the processes \Jp \to \gamma X and \Up \to \gamma X have been analysed using all available experimental data. Relativistic, higher order QCD and gluon mass corrections were taken into account in the fitted functions. Only on including the gluon mass corrections, were consistent and acceptable fits obtained. Values of 0.7210.068+0.0160.721^{+0.016}_{-0.068} GeV and 1.180.29+0.091.18^{+0.09}_{-0.29} GeV were found for the effective gluon masses (corresponding to Born level diagrams) for the \Jp and \Up respectively. The width ratios \Gamma(V \to {\rm hadrons})/\Gamma(V \to \gamma+ {\rm hadrons}) V=\Jp, \Up were used to determine αs(1.5GeV)\alpha_s(1.5 {\rm GeV}) and αs(4.9GeV)\alpha_s(4.9 {\rm GeV}). Values consistent with the current world average αs\alpha_s were obtained only when gluon mass correction factors, calculated using the fitted values of the effective gluon mass, were applied. A gluon mass 1\simeq 1 GeV, as suggested with these results, is consistent with previous analytical theoretical calculations and independent phenomenological estimates, as well as with a recent, more accurate, lattice calculation of the gluon propagator in the infra-red region.Comment: 50 pages, 11 figures, 15 table

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values
    corecore