885 research outputs found

    Computational study of zeolite-proton-palladium chemistry

    Get PDF
    A density functional theory study of the interaction of a Pd atom with the zeolitic Bronsted acid site is reported. Whereas reduction of Pd2+ to Pd-0 and 2H(+) is strongly exothermic, the energy of exchange of a single proton between Pd-0 and the zeolite is found to be nearly thermodynamically neutral. Reaction energy diagrams are presented for proton-assisted CO hydrogenation and hydratio

    Inter-rater reliability of the EPUAP pressure ulcer classification system using photographs

    No full text
    Background. Many classification systems for grading pressure ulcers are discussed in the literature. Correct identification and classification of a pressure ulcer is important for accurate reporting of the magnitude of the problem, and for timely prevention. The reliability of pressure ulcer classification systems has rarely been tested. Aims and objectives. The purpose of this paper is to examine the inter-rater reliability of classifying pressure ulcers according to the European Pressure Ulcer Advisory Panel classification system when using pressure ulcer photographs.Design. Survey was among pressure ulcer experts.Methods. Fifty-six photographs were presented to 44 pressure ulcer experts. The experts classified the lesions as normal skin, blanchable erythema, pressure ulcer (four grades) or incontinence lesion. Inter-rater reliability was calculated.Results. The multirater-Kappa for the entire group of experts was 0.80 (P < 0.001).Various groups of experts obtained comparable results. Differences in classifications are mainly limited to 1 degree of difference. Incontinence lesions are most often confused with grade 2 (blisters) and grade 3 pressure ulcers (superficial pressure ulcers).Conclusions. The inter-rater reliability of the European Pressure Ulcer Advisory Panel classification appears to be good for the assessment of photographs by experts. The difference between an incontinence lesion and a blister or a superficial pressure ulcer does not always seem clear.Relevance to clinical practice. The ability to determine correctly whether a lesion is a pressure ulcer lesion is important to assess the effectiveness of preventive measures. In addition, the ability to make a correct distinction between pressure ulcers and incontinence lesions is important as they require different preventive measures. A faulty classification leads to mistaken measures and negative results. Photographs can be used as a practice instrument to learn to discern pressure ulcers from incontinence lesions and to get to know the different grades of pressure ulcers. The Pressure Ulcer Classification software package has been developed to facilitate learning

    Twistors and Black Holes

    Full text link
    Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function (in the supergravity approximation) for BPS black holes with fixed electric and magnetic charges.Comment: 47 pages, v2: typos corrected, reference added, v3: minor change

    Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations

    Get PDF
    Item does not contain fulltextBACKGROUND: Hyperhomocysteinemia (HHCY) is a risk factor for cardiovascular diseases (CVD). HHCY may interact with hypertension (HTEN) and an unfavorable cholesterol profile (UNFAVCHOL) to alter the risk of CVD. OBJECTIVES: To estimate the prevalences of HHCY (1) isolated and (2) in combination with UNFAVCHOL and/or HTEN in different age categories. To provide information that may improve the screening and treatment of subjects at risk of CVD. DESIGN: Cross-sectional data on 12,541 men and 12,948 women aged 20 + y were used from nine European studies. RESULTS: The prevalence of isolated HHCY was 8.5% in subjects aged 20-40 y, 4.7% in subjects aged 40-60 y and 5.9% in subjects aged over 60 y. When combining all age groups, 5.3% had isolated HHCY and an additional 5.6% had HHCY in combination with HTEN and/or UNFAVCHOL. The combinations of risk factors increased with age and, except for HHCY&UNFAVCHOL, were more prevalent than predicted by chance. Of the young subjects (20-40 y), 24% suffered from one or more of the investigated CVD risk factors. This figure was 75.1% in the old subjects (60+ years). CONCLUSIONS: A substantial number of subjects in selected European populations have HHCY (10.9%). In half of these cases, subjects suffer also from other CVD risk factors like UNFAVCHOL and HTEN. Older people in particular tend to have more than one risk factor. Healthcare professionals should be aware of this when screening and treating older people not only for the conventional CVD risk factors like UNFAVCHOL and HTEN but also HHCY, as this can easily be reduced through increased intake of folic acid via supplement or foods fortified with folic acid

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Identifying genotype specific elevated-risk areas and associated herd risk factors for bovine tuberculosis spread in British cattle

    Get PDF
    Bovine tuberculosis (bTB) is a chronic zoonosis with major health and economic impact on the cattle industry. Despite extensive control measures in cattle and culling trials in wildlife, the reasons behind the expansion of areas with high incidence of bTB breakdowns in Great Britain remain unexplained. By balancing the importance of cattle movements and local transmission on the observed pattern of cattle outbreaks, we identify areas at elevated risk of infection from specific Mycobacterium bovis genotypes. We show that elevated-risk areas (ERAs) were historically more extensive than previously understood, and that cattle movements alone are insufficient for ERA spread, suggesting the involvement of other factors. For all genotypes, we find that, while the absolute risk of infection is higher in ERAs compared to areas with intermittent risk, the statistically significant risk factors are remarkably similar in both, suggesting that these risk factors can be used to identify incipient ERAs before this is indicated by elevated incidence alone. Our findings identify research priorities for understanding bTB dynamics, improving surveillance and guiding management to prevent further ERA expansion

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date
    • 

    corecore