212 research outputs found

    Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor

    Full text link
    Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν\nu F_{\nu} spectrum (\eprest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (\tninetyrest) and the isotropic equivalent bolometric energy (\eiso). Results: The distribution of \eprest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-\ep population is found but the distribution is biased against low \ep values. We find the lowest possible \ep that GBM can recover to be ~ 15 keV. The \tninetyrest distribution of long GRBs peaks at ~10 s. The distribution of \eiso has mean and median values of 8.9×10528.9\times 10^{52} erg and 8.2×10528.2 \times 10^{52} erg, respectively. We confirm the tight correlation between \eprest and \eiso (Amati relation) and the one between \eprest and the 1-s peak luminosity (LpL_p) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α\alpha gets softer when \ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither \eprest nor \tninetyrest.Comment: accepted by A&

    SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity

    Get PDF
    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in January 2009, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law with an exponential cutoff (Comptonized model), and two black-body functions (BB+BB). In the spectral fits with the Comptonized model we find a mean power-law index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized Epeak and the burst fluence and average flux. For the BB+BB fits we find that the fluences and emission areas of the two blackbody functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature blackbody has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.Comment: 13 pages, 10 figures, 2 tables; minor changes, ApJ in pres

    Fermi observations of high-energy gamma-ray emission from GRB 080825C

    Full text link
    The Fermi Gamma-ray Space Telescope (FGST) has opened a new high-energy window in the study of Gamma-Ray Bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.Comment: 18 pages, 7 figures. Accepted for publication in ApJ. Corresponding authors: A. Bouvier, J. Granot, A.J. van der Hors

    Inventory and review of the Mio–Pleistocene São Jorge flora (Madeira Island, Portugal): palaeoecological and biogeographical implications

    Get PDF
    The occurrence of plant fossils on Madeira Island has been known since the mid-nineteenth century. Charles Lyell and George Hartung discovered a leaf bed rich in Lauraceae and fern fossils at S~ao Jorge in 1854. The determinations were controversial but a full review was never performed. Here we propose possible geological settings for the fossiliferous outcrop, and present an inventory and a systematic review of the surviving specimens of the S~ao Jorge macroflora. The S~ao Jorge leaf bed no longer outcrops due to a landslide in 1865. It was possible to establish the two alternative volcano stratigraphical settings in the sedimentary intercalations from the Middle Volcanic Complex, ranging in age from 7 to 1.8 Ma. The descriptions of Heer (1857), Bunbury (1859) and Hartung & Mayer (1864) are reviewed based on 82 surviving specimens. From the initial 37 taxa, we recognize only 20: Osmunda sp., Pteridium aquilinum, Asplenium cf. onopteris, aff. Asplenium, cf. Polystichum, cf. Davallia, Woodwardia radicans, Filicopsida gen. et sp. indet. 1 and 2, Ocotea foetens, Salix sp., Erica arborea, cf. Vaccinium, Rubus sp, cf. Myrtus, Magnoliopsida gen. et sp. indet. 1 to 3, Liliopsida gen. et sp. indet. 1. Magnoliopsida gen. et sp. indet. 4 is based on one previously undescribed flower or fruit. The floristic composition of the S~ao Jorge fossils resembles the current floristic association of temperate stink laurel (Ocotea foetens) forest, suggesting a warm and humid palaeoclimate and indicating that laurel forests were present in Macaronesia at least since the Gelasian, a time when the palaeotropical geofloral elements were almost extinct in Europe.info:eu-repo/semantics/publishedVersio

    SEARCHING the GAMMA-RAY SKY for COUNTERPARTS to GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITO R and LARGE AREA TELESCOPE OBSERVATIONS of LVT151012 and GW151226

    Get PDF
    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914

    Understanding the nature and mechanism of foot pain

    Get PDF
    Approximately one-quarter of the population are affected by foot pain at any given time. It is often disabling and can impair mood, behaviour, self-care ability and overall quality of life. Currently, the nature and mechanism underlying many types of foot pain is not clearly understood. Here we comprehensively review the literature on foot pain, with specific reference to its definition, prevalence, aetiology and predictors, classification, measurement and impact. We also discuss the complexities of foot pain as a sensory, emotional and psychosocial experience in the context of clinical practice, therapeutic trials and the placebo effect. A deeper understanding of foot pain is needed to identify causal pathways, classify diagnoses, quantify severity, evaluate long term implications and better target clinical intervention

    Fermi/GBM observations of the ultra-long GRB 091024: A burst with an optical flash

    Full text link
    In this paper we examine gamma-ray and optical data of GRB 091024, a gamma-ray burst (GRB) with an extremely long duration of T90~1020 s, as observed with the Fermi Gamma-Ray Burst Monitor (GBM). We present spectral analysis of all three distinct emission episodes using data from Fermi/GBM. Because of the long nature of this event, many ground-based optical telescopes slewed to its location within a few minutes and thus were able to observe the GRB during its active period. We compare the optical and gamma-ray light curves. Furthermore, we estimate a lower limit on the bulk Lorentz factor from the variability and spectrum of the GBM light curve and compare it with that obtained from the peak time of the forward shock of the optical afterglow. From the spectral analysis we note that, despite its unusually long duration, this burst is similar to other long GRBs, i.e. there is spectral evolution (both the peak energy and the spectral index vary with time) and spectral lags are measured. We find that the optical light curve is highly anti-correlated to the prompt gamma-ray emission, with the optical emission reaching the maximum during an epoch of quiescence in the prompt emission. We interpret this behavior as the reverse shock (optical flash), expected in the internal-external shock model of GRB emission but observed only in a handful of GRBs so far. The lower limit on the initial Lorentz factor deduced from the variability time scale (Γmin=195110+90\Gamma_{min}=195_{-110}^+{90})is consistent within the error to the one obtained using the peak time of the forward shock (Γ0=120\Gamma_0=120) and is also consistent with Lorentz factors of other long GRBs.Comment: accepted for publication in A&

    Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk

    Get PDF
    The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.The work was partially supported by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174 and Sara Borrell fellowship to ELM) and Ministry of Science and Innovation (MTM2008-06747-C02-02 and FPU fellowship award to VU), Spain; AGAUR-Generalitat de Catalunya (Grant 2009SGR-581); Fundaciola Maratode TV3; Red Tematica de Investigacion Cooperativa en Cancer (RTICC); Asociacion Espanola Contra el Cancer (AECC); EU-FP7-201663; and RO1-CA089715 and CA34627; the Spanish National Institute for Bioinformatics (www.inab.org); and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA. MD Anderson support for this project included U01 CA 127615 (XW); R01 CA 74880 (XW); P50 CA 91846 (XW, CPD); Betty B. Marcus Chair fund in Cancer Prevention (XW); UT Research Trust fund (XW) and R01 CA 131335 (JG)
    corecore