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Xifeng Wu2", Núria Malats1*"

1 Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain, 2 Department of Epidemiology, The University of Texas MD

Anderson Cancer Center, Houston, Texas, United States of America, 3 Systems Biology Department, University of Vic, Vic, Spain, 4 Division of Cancer Epidemiology and

Genetics, National Cancer Institute, Department of Health and Human Services, Bethesda, Maryland, United States of America, 5 Centre for Research in Environmental
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Abstract

The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We
performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988
controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate
logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two
more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold
LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches
explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with
bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the
total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed.
The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the
effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was
detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer
risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.
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Introduction

Bladder cancer (BC) is the fifth most common neoplasm in

terms of incidence in industrialized countries accounting for

approximately 5–7% and 2–2.5% of the newly diagnosed

malignancies in men and women, respectively. BC is one of the

most prevalent cancers due to its chronic nature [1]. Tobacco and

occupational exposure to aromatic amines are the two best

established environmental risk factors [2,3]. In addition, strong

evidence for the influence of common genetic variants on BC

development has been acquired in the last years [4,5]. Genetic

susceptibility to BC has been investigated in relation to genes

encoding enzymes involved in the metabolism of xenobiotics,

apoptosis, cell cycle control, angiogenesis, and inflammation [4].

As for the latter process, there is evidence that inflammatory

cells, proinflammatory cytokines, and chemokines contribute to
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immunosuppression, cancer growth, and progression [6]. A link

between chronic inflammation and BC is supported by the

associations found between Schistosoma haematobium and squamous

cell carcinoma [7] and, less consistently, between urothelial cell

carcinoma and other types of urinary tract infection [8]. In

addition, the protective effect of long-term use of non-steroidal

anti-inflammatory drugs observed in some case-controls studies

supports a role of inflammation in this cancer [9,10].

Most association studies have focused on the detection of main

effects by using an allele- or genotype-based test for each single-

nucleotide polymorphism (SNP) separately. However, it is known

that complex traits, including BC, are explained by multiple loci

with rather small individual effects [11]. Thus, this simple strategy

will probably capture only a small proportion of the total genetic

variance of the disease conferred by all variants [12]. Therefore,

strategies to assess at the same time multiple SNPs and their

interaction effects are needed. Standard statistical methods such as

logistic regression are not well suited to this end. This level of

genetic complexity represents a statistical challenge in association

studies because of the high number of regression coefficients (p) in

comparison to sample size (n). Machine learning algorithms

provide alternatives for performing multi-SNP analysis [13]. These

algorithms are highly appealing since they are model specification-

free and may capture hidden information. Random Forest (RF), a

classification algorithm proposed by Breiman [14] that can be

used to identify the most important variables related to the disease,

has also been successfully applied to genome wide data [15].

Recently, an algorithm for variable selection has been proposed

(AUC-RF): it identifies the set of variables with the highest

predictive accuracy by optimizing the AUC (the area under the

ROC curve) of a sequence of random forests [16]. Other methods

to deal with oversaturated regression problems [17] that are

gaining recognition are the regularized regression methods, such

as ridge regression [18], the Least Absolute Shrinkage and

Selection Operator (LASSO) [19], and its Bayesian version [20].

These methods are penalized likelihood procedures where suitable

penalty functions are added to the negative log-likelihood to

automatically shrink spurious effects (effects of redundant covar-

iates) towards zero while effectively estimating the relevant ones.

The Bayesian version of LASSO provides several advantages over

ridge regression or the classical LASSO. As other Bayesian

models, it provides measures of uncertainty about estimates and

predictions, and as a consequence, valid standard errors, which

can be problematic for the frequentist LASSO [21]. In addition, it

yields marker-specific shrinkage of effect estimates, in contrast to

ridge regression, and overcomes the main limitation of LASSO

which admits at most n-1 nonzero regression coefficients [22].

Until present, whole genome association studies (GWAS)

individually analyzed a huge number of SNPs, most of them

located in regions not associated with the trait of interest while

others in LD with the causal variant. This approach is

unsatisfactory for traits affected by a large number of variants/

genes [12]. An alternative strategy is pathway analysis, dealing

with the joint assessment of a subset of SNPs with a potential

functional effect on the phenotype of interest.

The main objective of this study was to assess whether SNPs in

inflammation-related genes play a role in BC development in a

large case control study conducted in Spain and, subsequently, to

identify a pattern of those variants (signature) associated with the

BC risk by applying two recently developed statistical methods,

Bayesian threshold LASSO (BTL) model and AUC-RF. To assess

the robustness of the strategy, relevant findings were also analyzed

in an independent study, the Texas Bladder Cancer Study.

Results

Summary statistics
Table 1 shows the characteristics of cases and controls for the

whole sample and for the non-smoker subpopulation. Overall, the

study comprised 1,047 cases and 988 controls with genotyping

data for 886 SNPs in 194 inflammatory genes. The non-smoker

subset consisted of 424 individuals, 147 of which were BC cases.

The median age of patients at diagnosis was 68 and 70 years

(ranges 22–80 yrs) for the total population and non-smokers,

respectively. Overall, cigarette smoking was more common in

cases than in controls (86% vs. 72%) and in men than in women

(87% vs. 22%). Consequently, the percentage of men was different

in both sets of individuals: 87% and 35% for the total study and for

non-smokers, respectively.

Total population analysis
The application of the Bayesian Threshold LASSO provides for

each SNP its posterior probability of being associated with BC. In

Figure 1, we show the distribution of the posterior probability of

each SNP, ranked in decreasing order. SNPs were considered to

be associated to BC if the posterior probability of being higher/

lower than 0 was . 80%. This strategy identified 37 SNPs in 34

genes showing an association with BC. The highest posterior

probability (i.e., most relevant association) was 96.07% for CASP3-

rs3087455, whereas the lowest one was 51.98% for TLR2-

rs3804100. The SNPs with a protective minor allele were:

CASP3-rs3087455, CCR3-rs3091312, CASP9-rs2020902, IL17A-

rs8193036, MAP3K7-rs150126, IL6R-rs8192284, BLNK-

rs3789928, SCARB1-rs4765621, FOS-rs7101, TBK1-rs10878176,

BIRC5-rs744120, LY96-rs17226566, AICDA-rs11046349,

MAP2K4-rs4791489, IL15-rs17461269, CD14_IK-rs2569190,

JAK3-rs11888 and TNFRSF10A-rs4871857. The OR posterior

means ranged from 0.81 to 0.93 when comparing the minor with

the common homozygous genotypes (Table 2). The SNPs with the

minor allele associated with an increased risk of BC were: PRF1-

rs10999426, IL7R-rs1494555, ABCA1-rs2230806, IFNAR2-

rs2236757, MASP1-rs710459, BLNK-rs12357751, MAP3K3-

rs7209435, BLNK-rs10882755, TLR2-rs3804099, SOCS6-

rs723279, IL17C-rs899729, TLR4-rs2737191, FOS-rs1063169,

ABCC4-rs3765535, PARP4-rs13428, BIRC3-rs11602147, IL21R-

rs8049804, FADD-rs7939734 and ICAM1-rs5498. The posterior

means of ORs ranged from 1.10 to 1.20, when comparing the

minor with common homozygous genotypes. All the detected

SNPs were in Hardy-Weinberg equilibrium in the control

population. Single-SNP logistic regression models yielded p-values

,0.05 for 17 of them (of a total of 32, see Table S1) with a

minimum p-value of 0.0021, not corrected by multiple testing. The

estimated OR corresponding to the 37 SNPs-signature was .4.92

(see Figures S1 and S2 for more details). The 95% interval for the

OR when comparing the highest risk genotype combination with

the highest protective one ranged from 31.2–629.4. The wide

range of the credibility interval shows the large error associated

with the estimate. Posterior mean, median and mode of the

asymmetric posterior distribution were 206.5, 123.5 and 63.8,

respectively.

AUC-RF considered both genetic and non-genetic variables

and detected an optimal subset of 59 factors, including 56 SNPs

(Table S2). All the environmental covariates, except for gender,

were ranked first: smoking status was ranked as the most relevant

variable, with a Mean Decrease Gini index (MDG) of 11.55,

followed by geographical region with a relative importance of

35.2%. The age of the patient was ranked in the third place with a

relative importance of 19.4%, followed by SNPs. Table 3 shows
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the 12 most important SNPs detected by this method. Their

relative importance ranged from 20.8% for JAK3-rs2286662 to

14.4% for AKR1C3-rs1937845.

Thirteen SNPs in CASP3, PRF1, IL7R, ABCA1, IL6R, MASP1,

SCARB1, TLR2, IL17C, MAP2K4, CD14_IK, FADD, and ICAM1

were identified as relevant by both BTL and AUC-RF

approaches (bold-faced SNPs in Table 2; see also Figure 2a.).

Among them, 6 SNPs located in CASP3, PRF1, IL7R, ABCA1,

IL6R and CD14_IK had a p-value,0.05 by logistic regression

adjusted by covariates (see Table 2, for more details). The

significance of none of them held after Bonferroni correction for

multiple testing [23]. Despite the fact that no significant

association was found after performing the single marker

analyses, the ranking of SNPs highly correlated with that

obtained from the posterior probability BTL-based results

(Spearman’s correlation, rho = 0.78).

Genotypes for 17/37 SNPs with a posterior probability higher

than 80% in the discovery phase were available from the TXBC

study and this information was used for replication purposes. In

addition, 13 SNPs in high LD with SNPs detected by BTL in

the discovery phase were included in the phase 2 analyses.

Table S3 shows the posterior probabilities of being larger/

smaller than 0 and the posterior mean of ORs obtained in the

replication set. Two SNPs (IL6R-rs4129267 and TBK1-

rs10878182) in high LD with IL6R-rs8192284 and TBK1-

rs10878176 detected in the discovery study by BTL had

posterior probabilities of having a non-null effect higher than

90%. The OR of these surrogate SNPs were of risk while those

identified in the discovery study were of protection. Five

additional SNPs (IL21R-rs9930086 - in high LD with IL21R-

rs8049804, and MAP3K3-rs7209435, IL17A-rs8193036, FADD-

rs7939734, and TLR2-rs3804099) showed posterior probabilities

.70%, the threshold considered for replication. The ORs of

these 5 SNPs were of the same magnitude and direction as those

found in the discovery study.

Non-smoker subset analysis
Tobacco smoking is the strongest and most prevalent environ-

mental risk factor for BC and it may modify the effect of SNPs in

inflammation-related genes. Therefore, we performed the

association analysis among non-smokers to bypass its effect. In

such a context, BTL detected only two relevant SNPs (BCL10-

2647396 and NFKBIA-rs696) associated with the risk of BC with

a posterior probability of at least 80%. The two SNPs were also

detected by AUC-RF (see Figure 2b). When we extended the

posterior probability ($75%), the number of SNPs detected by

both approaches increased up to 8 in 8 genes (see Table 4). OR

posterior means ranged from 1.12–1.16 for those SNPs showing

an increased risk of BC, when comparing the two homozygous

genotypes, and from 0.89–0.91 for those with a protective

effect. Univariate logistic regression analysis yielded significant

results for the 8 SNPs with a minimum p-value of 0.0032, not

corrected by multiple testing. The OR median posterior density

corresponding to the 9 SNPs-signature detected by BTL was

2.73, with a posterior probability of 99% of being .1 and a

range between 1.35 and 6.66 as 95% credible interval (see

Figure S3).

AUC-RF detected an optimal subset of 93 variables related to

BC, 90 of which were SNPs (Table S4). Contrary to the findings in

the total population, gender was the most important covariate

related to BC among non-smokers, and age and region were at the

third and fourth position, respectively.

Common SNPs between total and non-smoker datasets
Figures 2c and 2d show the number of SNPs detected by both

BTL and AUC-RF in the SBC/EPICURO study for both the

whole population and the non-smoker individuals. There were no

common SNPs detected by BTL for those population sets with

posterior probabilities greater than 80%. However, when the

posterior probability applied was $75%, three SNPs were

detected in both datasets: MAP2K4-rs4791489, PRF1-rs10999426

and BCL10-rs2647396.

Table 1. Characteristic profile of the studied population.

Total population Non-smoker subset

Cases Controls Cases Controls

n = 1047 (%) n = 988 % n = 147 % n = 277 %

Gender

Male 915 (87) 873 (88) 52 (35) 180 (65)

Female 132 (13) 115 (12) 95 (65) 97 (35)

Smoking status

Never smokers 147 (14) 277 (28) 147 (100) 277 (100)

Occasional
smokers

44 (4) 79 (8)

Former smokers 400 (38) 361 (37)

Current smokers 450 (43) 267 (27)

Geographical area

Barcelona 182 (17) 196 (20) 22 (15) 45 (16)

Vallès/Bages 171 (16) 157 (16) 21 (14) 38 (14)

Elche 77 (7) 79 (8) 15 (10) 27 (10)

Asturias 180 (17) 146 (15) 26 (18) 35 (13)

Tenerife 437 (42) 410 (41) 63 (43) 132 (48)

doi:10.1371/journal.pone.0083745.t001
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Table 2. Risk estimates of Bayesian Threshold LASSO model (BTL), considering a posterior probability higher than 80%, and from
logistic regression for the total population.

SNP Gene Type Position Alleles ORaa_AA
a

Post
probb ORaa_AA

c p-valued

rs3087455 CASP3 Intronic 4q35.1 A/C 0.81 96.07 0.66 0.002

rs10999426 PRF1 Intronic 10q22.1 A/G 1.20 93.33 1.36 0.025

rs1494555 IL7R non_synonymous
coding

5p13.2 G/A 1.19 92.30 1.43 0.015

rs2230806 ABCA1 non_synonymous
coding

9q31.1 G/A 1.19 92.05 1.38 0.029

rs3091312 CCR3 downstream 3p21.31 A/T 0.86 90.93 0.69 0.013

rs8192284 IL6R non_synonymous
coding

1q21.3 A/G 0.88 90.35 0.74 0.022

rs2236757 IFNAR2 intronic 21q22.11 A/G 1.16 89.77 1.43 0.015

rs8193036 IL17A upstream 6p12.2 C/T 0.88 88.50 0.74 0.048

rs710459 MASP1 intronic 3q27.3 C/T 1.14 88.17 1.23 0.113

rs4765621 SCARB1 intronic 12q24.31 G/A 0.89 87.88 0.78 0.063

rs150126 MAP3K7 intronic 6q15 G/A 0.88 87.74 0.68 0.011

rs3789928 BLNK intronic 10q24.1 G/C 0.88 87.63 0.78 0.069

rs7209435 MAP3K3 intronic 17q23.3 T/C 1.13 86.29 1.29 0.095

rs2020902 CASP9 splice site 1p36.21 T/C 0.88 86.19 0.61 0.007

rs899729 IL17C upstream 16q24.3 C/A 1.12 86.06 1.22 0.132

rs7101 FOS 5’ UTR 14q24.3 C/T 0.89 85.93 0.71 0.023

rs12357751 BLNK intronic 10q24.1 C/T 1.14 85.67 1.36 0.040

rs3804099 TLR2 synonymous coding 4q31.1 T/C 1.13 84.97 1.27 0.072

rs2737191 TLR4 upstream 9q33.1 A/G 1.12 84.53 1.28 0.088

rs4791489 MAP2K4 downstream 17p12 C/T 0.91 84.52 0.80 0.112

rs10878176 TBK1 intronic 12q14.2 G/C 0.90 83.88 0.70 0.014

rs17226566 LY96 intronic 8q21.11 T/C 0.90 83.47 0.77 0.108

rs744120 BIRC5 upstream 17q25.3 C/G 0.90 83.27 0.69 0.014

rs723279 SOCS6 intronic 18q22.2 G/A 1.12 83.16 1.28 0.097

rs13428 PARP4 non_synonymous
coding

13q12.12 G/C 1.11 83.11 1.26 0.094

rs11046349 AICDA 3’ UTR 12p13.31 T/G 0.91 82.17 0.60 0.014

rs11602147 BIRC3 intronic 11q22.2 C/G 1.10 81.98 1.23 0.148

rs1063169 FOS intronic 14q24.3 G/T 1.12 81.88 1.56 0.018

rs2569190 CD14_IK 5’ UTR 5q31.3 A/G 0.92 81.83 0.75 0.025

rs5498 ICAM1 coding unknown 19q13.2 HGMD
mutation

1.10 81.24 1.25 0.087

rs17461269 IL15 intronic 4q31.21 T/A 0.91 81.22 0.76 0.072

rs3765535 ABCC4 intronic 13q32.1 A/G 1.12 81.21 1.41 0.091

rs11888 JAK3 3’ UTR 19p13.11 T/C 0.92 81.15 0.84 0.212

rs10882755 BLNK intronic 10q24.1 A/G 1.13 80.76 1.41 0.058

rs7939734 FADD upstream 11q13.3 T/A 1.10 80.75 1.22 0.135

rs8049804 IL21R intergenic 17q22 A/C 1.10 80.33 1.18 0.239

rs4871857 TNFRSF10A non synonymous coding 8p21.3 G/C 0.93 80.22 0.80 0.082

aPosterior mean of the OR, calculated from the BTL analyses Similar values for the median were obtained for each SNP.

bIt corresponds to max a, 1{að Þf gw0:8, where a~

ðz?

w0

p bSNP yjð ÞdbSNP .

cOR obtained from the adjusted logistic regression.
dp-value of the trend obtained from the adjusted logistic regression.
SNPs also selected by AUC-RF are bold-faced.
doi:10.1371/journal.pone.0083745.t002
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When focusing on AUC-RF results, 24 SNPs (ABCA1-rs2230806,

AICDA-rs2580874, ALOX5-rs1369214, BCL10-rs2647396, CD2-

rs3136701, CD4-rs2707210, FADD-rs7939734, FASLG-

rs929087, H2AFX-rs640603, H2AFX-rs643788, IKBKB-rs3747811,

IL15RA-rs2296135, IL21R-rs2189521, JAK3-rs2286662,

MAP2K4-rs4791489, MASP1-rs710459, NFKBIA-rs696, OPRD1-

rs204076, PRF1-rs10999426, RELA-rs11820062, RELA-

rs1466462, SCARB1-rs4765621, TBK1-rs10878178 and

TMED7-rs2052834) were identified in both datasets, represent-

ing the 43% and 27% of the SNPs selected in total and non-

smoker subjects, respectively.

Discussion

As all complex diseases, BC is not a single SNP/gene disorder.

Rather, many SNPs with small effects may lead to the

impairment of key pathways involved in their pathophysiology.

The identification of such SNP-signatures represents an an-

alytical challenge requiring the application of novel comprehen-

sive statistical approaches. To our knowledge, this is the first

study on BC analyzing a large number of SNPs with BTL that

has identified a subset of them jointly contributing to this

phenotype with a relevant magnitude of risk, much higher than

that provided by smoking (OR = 5 [2]), the main risk factor for

BC.

Thirteen SNPs in 13 genes were identified by both BTL and

AUC-RF, which can be considered as an internal validation. SNPs

in CASP3, IL6R, SCARB1, MAP2K4 and CD14_IK showed a

protective effect whereas those in PRF1, IL17R, ABCA1, MASP1,

TLR2, IL17C, FADD and ICAM1 were associated with a higher

risk of BC. Each SNP showed a small individual effect that could

not have been identified by logistic regression, the common

analytical approach used in GWAS, after applying the conserva-

tive Bonferroni’s correction for multiple testing.

We found previously published evidences about the association

of several of these SNPs/ genes with cancer risk despite the fact

that this information was not used in SNP selection. Among them,

SCARB1 codes for the scavenger receptor class B type I gene, a

cell-surface receptor that binds to high-density lipoprotein

cholesterol (HDL-C) and mediates HDL-C uptake [24,25].

SCARB1-rs4765621 maps to intron 1 and has been associated

with an increased risk of BC in combination with SLC23A2-

rs12479919, AKR1C3-rs2275928 and PLA2G6-rs2016755 [26].

This SNP is in linkage disequilibrium with SCARB1-rs4765623

that has been associated with renal cell carcinoma [27]. MAP2K4

encodes a dual specificity Ser/Thr protein kinase. Allelic

imbalances in this gene have been reported in bladder tumors

[28]. Furthermore, deletions and mutations of the MAP2K4 have

been described in human pancreatic, lung, breast, testicle, and

colorectal cancer cell lines, suggesting a tumor suppressor role

[29]. MAP2K4-rs4791489 is located 1226 bp downstream of the

gene and this is the first study to report an association with a

phenotype. IL7R encodes the receptor for IL-7, a cytokine

involved in the T cell differentiation and activation. IL7R variation

has been linked to chronic inflammatory diseases and cancer:

IL7R-rs1494555 has been associated with an increased risk of

gastric cancer [30], hematological neoplasms - by interacting

with a high BMI - [31], and non-small cell lung cancer where it

was detected by both logistic regression and random forest tests

[31]. This SNP leads to a Ile138Val substitution for which there

is no functional evidence. CD14 plays a major role in pathogen-

activated signal transduction pathways and in the production of

inflammatory cytokines [32]. CD14_IK-rs2569190 has been

associated with prostate cancer in African Americans [33],and

with coronary artery and cerebrovascular diseases [34,35].

PRF1 codes for perforin 1, one of the main toxic proteins of

cytolytic granules and a key effector in T-cell- and natural killer-

cell-mediated cytolysis. Its alterations cause familial hemopha-

gocytic lymphohistiocytosis type 2 (HPLH2), a rare and lethal

Figure 1. Histogram of the posterior probabilities of having a
positive (negative) SNP effect by Bayesian Threshold LASSO
model (BTL) in the total population. The dot point line indicates
the cut-off point of 80% above which SNPs were considered.
doi:10.1371/journal.pone.0083745.g001

Table 3. Relative variable importance for the top 12 polymorphisms selected by AUC-RF in the total population.

rs number Gene Type Alleles Position Relative variable importance a

rs2286662 JAK3 non synonymous coding A/G 19p13.11 20.8%

rs8192284 IL6R non_synonymous coding A/C 1q21.3 16.4%

rs7104333 CD5 downstream A/G 11q12.2 16.3%

rs288980 ROCK1 intronic C/T 18q11.2 15.7%

rs3087455 CASP3 intronic A/C 4q35.1 15.6%

rs11655650 BIRC5 intronic C/T 17q25.3 15.6%

rs3213427 CD4 3’ UTR T/C 12p13.31 15.3%

rs3136701 CD2 intronic C/G 1p13.1 15.0%

rs4765621 SCARB1 intronic G/A 12q24.31 14.8%

rs5498 ICAM1 coding unknown A/G 19p13.2 14.8%

rs2839488 TFF1 intronic C/G 21q22.3 14.6%

rs1937845 AKR1C3 5’ UTR G/A 10p15.1 14.4%

aCalculated by dividing the raw variable importance measurement by that with the highest MDG, that of smoking status.
doi:10.1371/journal.pone.0083745.t003
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Figure 2. Venn diagrams showing the overlapping between the SNPs selected by Bayesian Threshold model (BTL) and AUC-
Random Forest (AUC-RF). (A) Number of SNPs detected by each method in the total population. (B) Number of SNPs detected by each method in
the non-smoker subset. (C) Number of common SNPs detected by BTL in the total population and non-smoker subset, with posterior probabilities of
at least 80% and 75% of having an effect different from 0. (D) Number of SNPs detected by AUC-RF in both the total population and the non-smoker
subset.
doi:10.1371/journal.pone.0083745.g002

Table 4. Risk estimates from Bayesian Threshold LASSO model (BTL), considering a posterior probability of 75%, and from logistic
regression analyses among non-smokers.

rs number Gene Type Position Alleles ORaa_AA
a Post probb ORaa_AA

c p-valued

rs696 NFKBIA 3’ UTR 14q13.2 A/G 1.16 79.97 2.47 0.004

rs2647396 BCL10 intronic 1p22.3 C/T 0.89 79.65 0.40 0.011

rs10999426 PRF1 intronic 10q22.1 A/G 1.15 78.67 2.11 0.019

rs1800890 IL10 upstream 1q32.1 A/T 1.13 76.48 2.26 0.019

rs812606 MAP3K7 intronic 6q15 C/T 1.13 76.37 2.68 0.005

rs4791489 MAP2K4 downstream 17p12 C/T 0.91 76.87 0.49 0.030

rs20432 PTGS2 intronic 1q31.1 T/G 0.91 75.17 0.28 0.003

rs11188660 BLNK intronic 10q24.1 C/T 1.12 75.66 2.56 0.004

rs1061217 SLAMF1 3’ UTR 1q23.3 T/C 1.12 75.89 1.73 0.077

aPosterior mean of the OR, calculated from the BTL analyses. Similar values for the median were obtained for each SNP.

bIt corresponds to max a, 1{að Þf gw0:8, where a~

ðz?

w0

p bSNP yjð ÞdbSNP .

cOR obtained from the adjusted logistic regression.
dp-value of the trend obtained from the adjusted logistic regression.
SNPs also selected by AUC-RF are bold-faced.
doi:10.1371/journal.pone.0083745.t004
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autosomal recessive disorder of early childhood. PRF1-

rs10999426 has been clustered with other genes associated with

cytotoxic T cells in a colorectal cancer study: high expression of

the cytotoxic cluster genes was associated with a prolonged

disease-free survival [36]. Soluble interleukin-6-receptor-a-

subunit (IL-6R) is a potent cytokine playing an important role

in immune response. Altered gene expression has been

associated with multiple myeloma, autoimmune diseases and

prostate cancer risk [37]. The SNP IL6R-rs7529229, in linkage

disequilibrium with IL6R-rs8192284, has also been related to

risk of multiple myeloma [37].

We further focused on the assessment of non-smokers to discard

the potential modifying effect of tobacco on the association

between genetic variants and bladder cancer risk. Only two

polymorphisms associated with BC were detected by both

analytical methods: NFKBIA-rs696 and BCL10-rs2647396. NFKBI

is involved in response to stress, regulates COX-2 and proin-

flammatory cytokines, and is an important mediator of oncogen-

esis [38]. The NFKBIA-rs696 homozygosity has been associated

with a poorer survival in Swedish patients with colorectal cancer

[39]. Other studies have associated the deletion of NFKBIA with

glioblastoma multiforme [40] and Hodgkin’s lymphoma speci-

mens [41]. NFKBIA-rs696 is in linkage disequilibrium with rs8904,

a variant that has been associated with pain severity in lung cancer

patients [42]. BCL10, associated with protection from BC in our

study, plays an important role in the NF-kappaB and STAT

signalling pathways [40], It has been proposed to participate in

pancreatic carcinoma [43] and MALT lymphomas as part of the

t(1,4)(p22, q32) translocation [44]. BCL10-rs2647396 is intronic

and no function is known for this polymorphism.

Using an independent population and surrogate SNPs in high

LD with those identified in the discovery study, we replicated the

association with SNPs in IL6R and TBK1 identified by BTL. The

fact that the ORs obtained in the replication study were in

opposite direction to those detected in the discovery study can be

explained when using surrogate SNPs. Greene et al. recently

proved with simulated data that differences in allele frequency can

also provide an inversed allelic effect in a replication study [45].

When the threshold of the posterior probability was lowered to

70%, the association of five additional SNPs was also replicated.

Overall, we were able to replicate 30% of the selected SNPs by

BTL available in the TXBC study, a figure that is remarkable

when considering that BC is largely caused by environmental

factors and that both studies come from different geographical

areas and from centers with distinct patient referral patterns (in the

SBCS study most centers are general hospitals whereas the TXBC

Study was conducted at MD Anderson Cancer Center). Other

proposed causes for lack of replication are genetic heterogeneity,

environmental interactions, age-dependent effects, inadequate

statistical power, and gene-gene interactions, the latter explanation

pointing to a higher complexity of the underlying genetic

architecture [45]. We did not attempt to replicate SNPs identified

by AUC-RF because this method depends largely on the initial

variables considered. Woefully, data from a number of the original

SNPs considered in the discovery phase were not available in the

study used for replication.

The present study has several major strengths. Importantly, it

applies innovative analytical approaches dealing with the biolog-

ical complexity of the phenotype. Association analyses were

carried out by applying a regularized regression model (BTL) and

a nonparametric variable selection method (AUC-RF), in addition

to the single marker unconditional logistic regression, used in most

association studies. The first two methods overcome the main

limitation of the latter since they consider all the genetic

information jointly. The application of individual logistic regres-

sion makes sense under the assumption that only few genes affect

genetic predisposition [12], which certainly is not the case for BC.

BTL considers, a priori, that most of the SNPs have a small (if any)

effect on disease development, and performs a marker specific

shrinkage of effect estimates [20]. This approach permits dealing

with the ‘‘small n large p’’ problem and prevents overfitting. De los

Campos et al [22] suggested this method as an interesting

alternative to perform regressions on markers under an additive

model. We considered as associated to BC those SNPs with a

posterior probability .0.8 of having an effect greater (smaller)

than 0, as in [45]. Other criteria, as the Bayesian LOD score .3.2

[46] or ‘‘heritability of the marker’’.0.5% [47], have been used in

previous applications of BL. The choice of these criteria is

arbitrary because they have not been formally compared yet. On

the contrary, AUC-RF does not assume any model and considers

all possible interactions between the covariates included in the

analyses. It provides a measure of the importance of the variable,

although it does not indicate whether the effect of this variable is

protective or risky. It is also important to emphasize that the

selected variables with AUC-RF are not necessarily significantly

associated with the trait; rather, they represent the combination of

genotypes that best predicts the disease indicator and are thus

worthy of further investigation. We gave priority to those SNPs

selected by both methods although SNPs selected by only one of

them should not be discarded, given the different nature and

assumptions of each approach. Further methodological strengths

of the study are the large sample size, the high participation rates,

and the high quality of information on exposures and genotyping

of the SBC/EPICURO Study.

However, some limitations need to be considered when

interpreting these results. It is possible that potentially informative

susceptibility markers were not selected for genotyping. In

addition, incomplete tagging of the selected genes may have

resulted from the use of an earlier HapMap release to select tag

SNPs. Therefore, those genes with SNPs without relevant results in

this study should not be disregarded as potentially associated with

BC. As for the constraints of the approaches used, BTL only

assumes an additive mode of inheritance and no interactions were

considered. A common drawback of machine learning based

methods, such as AUC-RF, is that they typically identify a SNP set

that produces the highest classification accuracy but does not

necessarily correspond to a strong association with the disease.

Indeed, machine learning-based approaches tend to introduce

false positives, since the inclusion of many SNPs increases

classification accuracies [48].

The large difference in the risk estimates according to BTL

between the total and the non-smoker datasets suggests a potential

modifying effect of tobacco over the SNP-signature on BC risk.

While statistical underpowered results cannot be discarded, a large

smoking*SNPs interaction assessment considering all SNPs

included in the study should be performed. This analysis requires

of further methodology innovation and large computational

infrastructure.

In conclusion, we report here the joint effect of several variants

in inflammatory genes strongly associated with BC risk. The use of

multi-SNP assessment approaches to explore the hidden herita-

bility of complex diseases is highly promising in the association

analysis field. While the application of these methods at a genome-

wide level is straightforward, the great computational demand

represents the main constraint and few studies have applied them

to genome-wide data in association [15] or prediction settings [49]

till present. Ours is one of the first studies applying such

methodologies to a large set of SNPs in cancer research.
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Materials and Methods

Ethics statement
Informed written consent was obtained from the study

participants. The study was approved by the Institutional Review

Board of the U.S. National Cancer Institute, the Ethics

Committees of each participating hospital, MD Anderson Cancer

Center, and the Baylor College of Medicine.

Study population
The population considered in this analysis comes from the

Spanish Bladder Cancer/EPICURO Study. This is a hospital-

based case-control study conducted during 1998–2001 in 18

hospitals in five areas in Spain (Asturias, Barcelona metropolitan

area, Vallès/Bages, Alicante and Tenerife), as described elsewhere

[50]. Eligible cases were aged 21–80 years and newly diagnosed of

a histologically confirmed transitional cell carcinoma of the

urinary bladder based on the 1998 system of WHO and the

International Society of Urological Pathology [51]. Controls were

selected from patients admitted to participating hospitals for

diagnoses thought to be unrelated to the BC risk factors, and

individually matched to the cases on age at interview within 5-year

categories, gender, ethnicity and region. A total of 1,451 cases and

1,444 controls were eligible for the study, out of them 84% of the

cases and 88% of the controls agreed to participate and were

interviewed.

Demographic and risk factor information was collected at the

hospital using computer-assisted personal interviews. Subjects

were categorized regarding smoking status as never smokers, if

they had smoked less than 100 cigarettes in their lifetime;

occasional smokers, if they had smoked at least one cigarette per

day for less than 6 months; former smokers, if they had smoked

regularly but stopped smoking more than one year before the

study inclusion date; and current smokers, if they had smoked

regularly within a year of the inclusion date.

A very large proportion of individuals, 1,188 cases and 1,173

controls, provided blood or buccal cell sample for DNA extraction.

Gene & SNP selection and genotyping
A 1,536 SNPs GoldenGate Illumina Genotyping Assay (San

Diego, CA, USA) platform was designed using tagSNPs selected to

cover the variation of key genes involved in candidate pathways,

among them those related to inflammatory response (see Table

S5). Genes were carefully selected according to current available

evidence, both epidemiological and biological, of their involve-

ment in inflammatory processes. Gene selection favored those

inflammatory genes showing association with cancer. The

selection of tagSNPs was done using the SYSNPs (Select Your

SNPs) application [52]. At the moment of tagSNPs selection, the

available databases were dbSNP b25, hg17 and HapMap Release.

The tagger algorithm was Haploview’s Tagger (v3.32) with default

parameter values. SYSNPs options were selected to force the

inclusion of SNPs that had been previously genotyped in the same

samples as tagSNPs. These previous genotyping efforts are

described in detail in Garcia-Closas [50,53] for the TaqMan

and a previous GoldenGate Illumina genotyping, respectively.

SNPs were genotyped following the manufacturer’s instructions

(http://www.illumina.com/) regarding DNA amount and con-

centrations and by including intra- and inter-assay duplicates as

well as negative controls. DNA from cases and controls was blindly

placed in the 96-well plates so that proportionate numbers were

achieved in all plates. Successful genotyping was obtained for

1,150 cases and 1,149 controls.

Quality control
Following the recommendations of Anderson, Pettersson et al.

[54], a thorough assessment of data quality was carried out. SNPs

(N = 15) genotyped in the present and previous platforms showed

good agreement (ranging from 98.2% to 99.8%); thus, individuals

with missing SNPs data in one platform were completed with their

counterparts from the same SNP genotyped in the other platforms,

if they were no missing. To consider individuals in this analysis, we

required that .95% of the SNPs were successfully genotyped in

each platform. In addition, SNPs showing .5% missing geno-

types, and those with a MAF ,5% that did not show an

association with BC after performing a Fisher’s exact test, were

excluded from the analyses. The final number of cases and

controls included in the analysis was 1,047 and 988, respectively.

Missing genotypes were imputed with the k-NN method using the

package SCRIME in R [55]. To minimize colinearity between

variables, pairwise linkage disequilibrium between SNPs was

estimated based on r2 values using the package GENETICS in

R (http://cran.r-project.org/web/packages/genetics/index.html),

and only one of each pair of SNPs were retained for further

analyses when r2 .0.8. In addition, those SNPs pertaining to the X

chromosome (24 SNPs belonging to 7 genes) were excluded from

the final dataset, yielding a final number of 886 SNPs and 194

genes. The existence of population stratification was also checked

using a principal component analysis. While participants were

selected from different regions of Spain, no subpopulations were

apparent after the visual inspection of the first two principal

components.

Statistical methods
Three different statistical approaches were applied to explore

the association of SNP variants with BC risk: the Bayesian

Threshold Lasso model (BTL), the Area Under the Curve-

Random Forest (AUC-RF), and the logistic regression applied to

each individual SNP.

Bayesian Threshold LASSO model. A BTL model [45]

was adapted in this study for the association analysis. A threshold

model [56] was considered to account for the discrete nature of the

phenotype (y), which can take the values 0 or 1, if the individual

did not show or showed the disease, respectively. This method-

ology assumes that the expression of the trait is related to an

underlying continuous variable, called liability (l) [57], so that the

disease is observed if the value of the latent variable exceeds a

threshold (t). This can be expressed as follows:

Pr yi~1 hj ,s2
e

� �
~ Pr tj{1vli be,bSNP,t,s2

e

��� �

~1{W
t{x

0
ei

be{x
0
SNPi

bSNP

s2
e

 ! ð1Þ

where s2
e corresponds to the residual variance, be is the vector of

environmental (non-genetic) covariate effects (i. e., gender;

smoking status in 4 categories; region, in 5 categories; and age

as a continuous covariate), bSNP is the vector of the coefficients of p

SNPs in inflammation related genes, and x
0

ei
and x

0

SNPi
correspond

to the incidence vectors of appropriate order. Thus, the following

model was assumed for the liabilities li~x
0
ei

bezx
0
SNPi

bSNPzei.

An additive inheritance model was assumed for the SNPs, so that

they were coded as 0, 1 and 2 if the genotype was AA, Aa and aa,

respectively.
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LASSO method [19] simultaneously perform variable selection

and shrinkage of coefficients. The Bayesian interpretation of the

LASSO [20] indicates that the solution can be viewed as the

posterior mode in a Bayesian model with Gaussian likelihood

p y b,s2
e

��� �
~ P

n

i~1
N yi x

0

ib,s2
e

��� �
and a prior on b that is the product

of m independent, zero-mean, double exponential (DE) densities

DE bj lj
� �

~
l

2
e{l bjj j. DE prior can be represented as a mixture of

scaled Gaussian densities, where the mixing process of the

variances is an exponential distribution ( P
m

j~1
N bj 0,t2

j s2
e

���� �
|

P
m

j~1
exp t2

j lj
� �

). Parameter l controls the shape of the prior

distribution assigned to t{2
j , the exponential prior assigns more

density to small values of the tj than to large ones, and follows, a

priori, a Gamma distribution G l2 a1,a2j
� �

. A DE prior produces

stronger shrinkage of regression coefficients close to 0 (without an

effect) and less shrinkage to those with large absolute values.

Fully conditional distribution for unknowns (i.e., regression

coefficients (b), t{2
j and l2) were multivariate normal with

mean (covariance matrix) equal to the solution (inverse of

coefficient matrix) of the system of equations

X
0
Xs{2

e zDiag t{2
j s{2

e

� �h i
b̂b~X

0
ys{2

e , inverse Gaussian with

mean mj~ sel
�

bj

�� ��� �
and scale parameter l2, and Gamma

pza,
1

2

Xp

j~1
t2

j za2

� 	
, respectively. The residual variance

and the threshold separating the two categories (controls and

cases) were set to 1 and 0 for identification purposes.

For each analysis, a unique McMC chain of 50,000 iterations

was obtained using a Gibbs sampler implemented in the Fortran-

language [45]. The first 10,000 iterations were discarded as burn-

in and all the remaining iterations were retained to infer posterior

marginal distributions of unknown parameters. Convergence of

chains was assessed visually and applying the Geweke criterion

[58]. SNPs were considered to be associated with BC when the

mass of the marginal posterior distribution of the coefficient was

far from the null hypothesis being equal to zero, specifically, when

max a, 1{að Þf gw0:8, where a is the area from zero to infinity

under the marginal posterior distribution of the coefficient:

a~

ðz?

w0

p bSNP yjð ÞdbSNP.

Posterior distributions of odds ratios (OR) for each SNP were

calculated as a measure of relative risk. First, the probability of

having BC for each genotype at each iteration was calculated by

transforming the liability to BC to the observable scale, following

Dempster and Lerner [59]. Thus, the probability of having BC for

individuals with genotype AA for the SNP s at iteration (k) was

calculated as:

Pr yi~1 b(k)
s ,m,s2

e

��� �
~1{W

t{m{xAAb(k)
s

se

 !
ð2Þ

where m corresponds to the mean of the liability to BC. OR

posterior distributions for each SNP were calculated considering

the AA genotype as the reference group. For example, the odds of

disease for individuals with the heterozygous genotype compared

with those individuals with the AA genotype (OR
(k)
j~Aa AAj ) at

iteration k was calculated as:

OR
(k)
s~Aa AAj ~

Pr yi~1 xAab(k)
s

��� ��
Pr yi~0 xAab(k)

s

��� �
Pr yi~1 xAAb(k)

s

��� ��
Pr yi~0 xAAb(k)

s

��� � ð3Þ

In addition, the OR posterior distributions corresponding to the

signature of the SNPs detected by BTL were calculated using a

modification of equation (3):

OR
(k)
risky=protective

~

Pr yi~1 Xriskyb(k)
��� ��

Pr yi~0 Xriskyb(k)
��� �

Pr yi~1 Xprotectiveb(k)
��� ��

Pr yi~0 Xprotectiveb(k)
��� � ð4Þ

where Xriskyb(k)/ Xprotectiveb(k) corresponds to the effect of the

most risky/protective genotypes of the SNPs detected as relevant

by BTL at iteration k.

Area Under the Curve-Random Forest. Recently Calle

et al. [16] proposed a new algorithm for genomic profiling based

on optimizing the area-under-the ROC curve (AUC) of the

Random Forest [13]. Briefly, RF comprises an ensemble of trees,

generated from bootstrap samples, and their application provides

a quantification of the variable importance in the context of a

non-linear model. AUC-RF algorithm iteratively fits RF and

performs a backward elimination process based on the initial

ranking of variables. The area under the ROC curve (AUC) of

the RF is used instead of the classification error as a measure of

predictive accuracy. Five hundred trees were used to construct

each forest, a 20% of variables were eliminated at every step and

the number of remaining variables to stop the process of

backward elimination was set to 10. The optimizing criterion

used to construct the trees was the mean decrease Gini index

(MDG), and the relative variable importance of each variable

was calculated by dividing the raw variable importance

measurement (i.e., the MDG) by that with the highest MDG.

In order to perform a more fair comparison with the results

obtained from BTL model, environmental effects were also

included in the AUC-RF analyses. Age, recorded as a continuous

variable, was categorized in 3 groups: ,60 yr; 60–70 yrs; and $

70 yrs, to avoid bias [60]. AUC-RF was implemented using the

AUCRF package [16] in R- language (http://www.R-project.

org).

Logistic regression. The standard approach in most GWAS

was also used to analyze the association between BC and the

individual SNPs belonging to genes related to inflammation. Odds

ratios and p-values for the common homozygous versus the rare

homozygous were calculated for each SNP using an unconditional

logistic regression. Environmental covariates (e. g., age, region,

smoking status and gender) were included in the model in order to

adjust by their potential confounding effects. Analyses were run in

R-language (http://www.R-project.org). Those SNPs with p-

values ,0.05, two-sided test, after Bonferroni’s correction were

kept for comparison with the results of the other two methods.

The number of SNPs detected by both BTL and AUC-RF in

the total population and the non-smoker subset was examined, as

well as the corresponding p-value obtained after the logistic

regression. Analyses were also run among non-smokers to clean
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the population up for the smoking effect, the main environmental

risk factor. It has been previously suggested that the genetic

architecture of this group is different from that among smokers [16].

Those SNPs detected by the two first methods both in the total

population and in the non-smokers subset were further discussed.

Replication study
Cases and controls in the replication stage were from the Texas

Bladder Cancer (TXBC) study, a hospital-based bladder cancer

case–control study conducted at the University of Texas MD

Anderson Cancer Center. All cases were newly diagnosed,

histologically confirmed, and previously untreated incident blad-

der cancer cases recruited from 1999 until present [5]. The

controls were healthy individuals with no prior history of cancer

(except non-melanoma skin cancer) and were recruited from

Kelsey Seybold, the largest multi-specialty, managed-care physi-

cian group in the Houston metropolitan area.

Trained MD Anderson interviewers collected comprehensive

epidemiological data in a 45 minute interview on demographics,

family history of cancer, and smoking status from all study

participants of the TXBC study. Most (78.2%) of cases and sex-

matched controls were men. The mean age of cases (63.8 years)

and controls (62.9 years) was highly similar. As expected, the

percentage of smokers among cases was higher than that among

control: 73% vs. 55%, respectively. Blood sample was collected for

DNA extraction at the end of the interview.

Genomic DNA extraction and storage was described elsewhere

[5]. Genotyping for the TXBC data set was generated using the

Illumina HumanHap610 chip containing 620,901 markers and

the iSelect chip containing 9,645 SNPs at MD Anderson.

Detailed quality control measures were described previously. All

the subjects included in this study were Caucasians and had call

rate .95%. A total number of 695 cases and 706 controls were

considered for analysis. SNP call rate .95% criterion was

applied. We further removed markers that deviated from Hardy-

Weinberg equilibrium in the controls at p-value , 0.0001. Out of

886 SNPs considered in the discovery study, 372 SNPs were

available from the TXBC study and passed quality control

procedures. Among them, 17 SNPs overlapped with those

selected by the BTL method in the SBC/EPICURO Study.

We further included 13 SNPs from the TXBC study that were in

high LD with SNPs detected in the discovery study. The BTL

model included all SNPs as well as gender, age, and smoking

status. The analyses were performed with the same software and

criteria in both studies.
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Figure S1 Posterior distribution of the OR correspond-
ing to the 37 SNP-signature detected by BTL in the total
population (calculated using equation 4). The minimum

estimate for OR was 4.92. The 95% credible interval for the ORs

corresponding to the 37 SNPs-signature ranged 31.15-629.42 with

the most risky genotype combination conferring 123.5 (posterior

median) fold higher risk of BC than the most protective one. The

wide 95% interval indicates a large error associated to the

estimation of the OR for the 37 SNPs-signature.
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Figure S2 Log OR median (bullets) and 95% credible
intervals (vertical lines) for the signatures including the
SNPs with the highest posterior probabilities from BTL
analysis on total data. Note that the higher number of SNPs

included in the signature the wider is the 95% credible interval

(error associated to the estimate of OR).
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Figure S3 Posterior distribution of the OR correspond-
ing to the 9 SNP-signature detected by BTL (75%
posterior probability cut-off point) in the non-smoker
subset. Note that the 95% credible interval is narrower than that

for the OR of the SNP-signature for the total population (Figures

S1 and S2), probably due to the lower number of SNPs included in

that signature.
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Table S1 Genotype distribution among cases and
controls and bladder cancer risk estimates for the SNPs
with p-values ,0.05 obtained in the single marker
analyses.
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Table S2 Relative variable importance for the polymor-
phisms selected by AUC-RF in the total population.
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Table S3 Risk estimates and posterior probabilities of
having an effect larger (smaller) than 0 of the SNPs
included in the validation study that are in common (or
in high LD) with those detected in the discovery study by
BTL.
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Table S4 Relative variable importance for the SNPs
selected by AUC-RF among the non-smoker population.
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Table S5 Top 50 gene sets of canonical pathways and
GO biological process (http://www.broadinstitute.org/
gsea) with the rate of overlapping with the gene set used
in this study.
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Pisano, and Montserrat Torà for their technical assistance along the

process leading to this work.

Author Contributions

Conceived and designed the experiments: ELdM MLC NM. Performed

the experiments: NR MK SJC AT MGC AC DTS FXR XW NM.

Analyzed the data: ELdM YY VU SP GV. Contributed reagents/

materials/analysis tools: YY AN BLG MGC AGN FXR XW NM. Wrote

the paper: ELdM NM. Lead the statistical analysis and partially wrote the

code for the BTL and postgibbs analyses: ELdM.

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. (2010) Estimates of

worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:

2893–2917.

2. Samanic C, Kogevinas M, Dosemeci M, Malats N, Real FX, et al. (2006)

Smoking and Bladder Cancer in Spain: Effects of Tobacco Type, Timing,

Environmental Tobacco Smoke, and Gender. Cancer Epidemiol Biomarkers

Prev 15: 1348–1354.

3. Silverman D, Devesa SS, Morore LE, Rothman N (2006) Bladder cancer. In:

Schottenfeld D, Fraumeni Jr JF, editors. Cancer epidemiology and prevention.

New York, NY: Oxford University Press. pp. 1101–1127.

Multi-SNP Assessment of Bladder Cancer Risk

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83745



4. Malats N (2008) Genetic epidemiology of bladder cancer: scaling up in the

identification of low-penetrance genetic markers of bladder cancer risk and
progression. Scand J Urol Nephrol Suppl 218: 131–140.

5. Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, et al. (2010) A

multi-stage genome-wide association study of bladder cancer identifies multiple
susceptibility loci. Nat Genet 42: 978–984.

6. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow?
Lancet 357: 539–545.

7. IARC (1994) Monogr Eval Carcinog Risks Hum. Lyon: IARC.

8. Michaud DS (2007) Chronic inflammation and bladder cancer. Urol Oncol 25:
260–268.

9. Fortuny J, Kogevinas M, Garcia-Closas M, Real FX, Tardon A, et al. (2006) Use
of analgesics and nonsteroidal anti-inflammatory drugs, genetic predisposition,

and bladder cancer risk in Spain. Cancer Epidemiol Biomarkers Prev 16: 1696–
1702.

10. Murta-Nascimento C, Schmitz-Drager BJ, Zeegers MP, Steineck G, Kogevinas

M, et al. (2007) Epidemiology of urinary bladder cancer: from tumor
development to patient’s death. World J Urol 25: 285–295.

11. Hoh J, Ott J (2003) Mathematical multi-locus approaches to localizing complex
human trait genes. Nat Rev Genet 4: 701–709.

12. de los Campos G, Gianola D, Allison DB (2010) Predicting genetic

predisposition in humans: the promise of whole-genome markers. Nat Rev
Genet 11: 880–886.

13. Szymczak S, Biernacka JM, Cordell HJ, González-Recio O, König IR, et al.
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45. González-Recio O, López de Maturana E, Vega AT, Engelman CD, Broman

KW (2009) Detecting single-nucleotide polymorphism by single-nucleotide

polymorphism interactions in rheumatoid arthritis using a two-step approach

with machine learning and a Bayesian threshold least absolute shrinkage and

selection operator (LASSO) model. BMC proceedings 3 (Suppl 7).

46. Yi N, Xu S (2008) Bayesian LASSO for Quantitative Trait Loci Mapping.

Genetics 179: 1045–1055.

47. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide

association studies. Bioinformatics 27: 516–523.

48. Han B, Park M, Chen XW (2010) A Markov blanket-based method for detecting

causal SNPs in GWAS. BMC Bioinformatics 11 Suppl 3: S5.

49. Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, et al.

(2011) Beyond missing heritability: prediction of complex traits. PLoS Genet 7:

e1002051.

50. Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, et al.

(2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder

cancer: results from the Spanish Bladder Cancer Study and meta-analyses.

Lancet 366: 649–659.

51. Mostofi FK, Davis CJ, Sesterhen I (1999) Histological Typing of Urinary

Bladder Tumours. World Health Organization International Classification of

Histological Tumours; Verlag S, editor. Berlin.

52. Lorente-Galdos B, Medina I, Morcillo-Suarez C, Heredia T, Carreño-Torres A,

et al. (2012) Select your SNPs (SYSNPs): a web tool for automatic and massive

selection of SNPs. Int J Data Min Bioinform 6: 324–334.

53. Garcia-Closas M, Malats N, Real FX, Yeager M, Welch R, et al. (2007) Large-

scale evaluation of candidate genes identifies associations between VEGF

polymorphisms and bladder cancer risk. PLoS Genet 3: e29.

54. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, et al. (2010)

Data quality control in genetic case-control association studies. Nature protocols

5: 1564–1573.

55. Schwender H (2007) Statistical Analysis of Genotype and Gene Expression Data.

Dissertation: University of Dortmund.

56. Wright S (1934) The method of path coefficients. The Annals of Mathematical

Statistics 5 (3): 161–215.

57. Falconer DS (1965) The inheritance of liability to certain diseases, estimated

from the incidence among relatives. Ann Hum Genet 29: 51–76.

58. Geweke J (1992) Bayesian Statistics. pp. 169–193.

59. Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics

35: 212–236.

60. Foulkes AS (2009) Applied Statistical Genetics with R For Population-based

Association Studies; Gentleman R, Hornik K, Parmigiani G, editors. 233 Spring

Street, New York, NY 10013, USA: Springer Science+Business Media, LLC.

Multi-SNP Assessment of Bladder Cancer Risk

PLOS ONE | www.plosone.org 11 December 2013 | Volume 8 | Issue 12 | e83745


