446 research outputs found

    Dynamic changes in H1 subtype composition during epigenetic reprogramming

    Get PDF
    In mammals, histone H1 consists of a family of related proteins, including five replication-dependent (H1.1–H1.5) and two replication-independent (H1.10 and H1.0) subtypes, all expressed in somatic cells. To systematically study the expression and function of H1 subtypes, we generated knockin mouse lines in which endogenous H1 subtypes are tagged. We focused on key developmental periods when epigenetic reprogramming occurs: early mouse embryos and primordial germ cell development. We found that dynamic changes in H1 subtype expression and localization are tightly linked with chromatin remodeling and might be crucial for transitions in chromatin structure during reprogramming. Although all somatic H1 subtypes are present in the blastocyst, each stage of preimplantation development is characterized by a different combination of H1 subtypes. Similarly, the relative abundance of somatic H1 subtypes can distinguish male and female chromatin upon sex differentiation in developing germ cells. Overall, our data provide new insights into the chromatin changes underlying epigenetic reprogramming. We suggest that distinct H1 subtypes may mediate the extensive chromatin remodeling occurring during epigenetic reprogramming and that they may be key players in the acquisition of cellular totipotency and the establishment of specific cellular states

    RR Lyrae stars in eclipsing systems - historical candidates

    Full text link
    Discovery of binary systems among RR Lyrae stars belongs to challenges of present astronomy. So far, none of classical RR Lyrae stars was clearly confirmed that it is a part of an eclipsing system. For this reason we studied two RR Lyrae stars, VX Her and RW Ari, in which changes assigned to eclipses were detected in sixties and seventies of the 20th century. In this paper our preliminary results based on analysis of new photometric measurements are presented as well as the results from the detailed analysis of original measurements. A new possible eclipsing system, RZ Cet was identified in the archive data. Our analysis rather indicates errors in measurements and reductions of the old data than real changes for all three stars.Comment: 6 pages, 4 figures, submitted to Proceedings of the 47th Conference on Variable Stars Researc

    The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH

    Get PDF
    Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data

    The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice

    Get PDF
    DNA methylation plays an important role in suppressing retrotransposon activity in mammalian genomes, yet there are stages of mammalian development where global hypomethylation puts the genome at risk of retrotransposition-mediated genetic instability. Hypomethylated primordial germ cells appear to limit this risk by expressing a cohort of retrotransposon-suppressing genome-defence genes whose silencing depends on promoter DNA methylation. Here, we investigate whether similar mechanisms operate in hypomethylated trophectoderm-derived components of the mammalian placenta to couple expression of genome-defence genes to the potential for retrotransposon activity. We show that the hypomethylated state of the mouse placenta results in activation of only one of the hypomethylation-sensitive germline genome-defence genes: Tex19.1. Tex19.1 appears to play an important role in placenta function as Tex19.1(−/−) mouse embryos exhibit intra-uterine growth retardation and have small placentas due to a reduction in the number of spongiotrophoblast, glycogen trophoblast and sinusoidal trophoblast giant cells. Furthermore, we show that retrotransposon mRNAs are derepressed in Tex19.1(−/−) placentas and that protein encoded by the LINE-1 retrotransposon is upregulated in hypomethylated trophectoderm-derived cells that normally express Tex19.1. This study suggests that post-transcriptional genome-defence mechanisms are operating in the placenta to protect the hypomethylated cells in this tissue from retrotransposons and suggests that imbalances between retrotransposon activity and genome-defence mechanisms could contribute to placenta dysfunction and disease

    Control of Transdermal Permeation of Hydrocortisone Acetate from Hydrophilic and Lipophilic Formulations

    Get PDF
    The purpose of this research was the preparation of four formulations containing hydrocortisone acetate (HCA) for topical application, including two aqueous systems (hydrophilic microemulsion and aqueous gel) and two systems with dominant hydrophobicity (hydrophobic microemulsion and ointment). The formulations were tested for the release and permeation of HCA across an animal membrane. The release of HCA was found comparable for the four systems. The two microemulsions promote permeation across an ex-vivo membrane, examined by means of a Franz cell. Hydrophobic microemulsion guarantees the highest solubility (2,370 μg/ml) and flux (133 μg/cm2.h) of the drug, since it contains almost 40% Transcutol, a permeation enhancer. Gel and ointment provide lower solubility and flux, being the values, related to the ointment, the lowest ones (562 μg/ml and 0.4 μg/cm2.h). Experimental results allow the conclusion that gel and ointment can be suitable when it is desirable to minimize absorption of topically applied HCA as to keep the drug restricted to the diseased area and prevent side effects of the systemic presence of HCA

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single shot ablation threshold

    Get PDF
    The process of damage accumulation in thin ruthenium films exposed to multiple femtosecond XUV free electron laser FEL pulses below the critical angle of reflectance at the Free electron LASer facility in Hamburg FLASH was experimentally analyzed. The multi shot damage threshold is found to be lower than single shot damage threshold. Detailed analysis of the damage morphology and its dependence on irradiation conditions justifies the assumption that cavitation induced by the FEL pulse is the prime mechanism responsible for multi shot damage in optical coating

    Measurements of Dihadron Correlations Relative to the Event Plane in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    Dihadron azimuthal correlations containing a high transverse momentum (\pt) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to \pp\ and \dAu\ collisions. The modification increases with the collision centrality, suggesting a path-length dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20-60\%) Au+Au collisions at \snn=200~GeV as a function of the trigger particle's azimuthal angle relative to the event plane, \phis=|\phit-\psiEP|. The azimuthal correlation is studied as a function of both the trigger and associated particle \pt. The subtractions of the combinatorial background and anisotropic flow, assuming Zero Yield At Minimum (\zyam), are described. The away-side correlation is strongly modified, and the modification varies with \phis, which is expected to be related to the path-length that the away-side parton traverses. The pseudo-rapidity (\deta) dependence of the near-side correlation, sensitive to long range \deta correlations (the ridge), is also investigated. The ridge and jet-like components of the near-side correlation are studied as a function of \phis. The ridge appears to drop with increasing \phis while the jet-like component remains approximately constant. ...Comment: 50 pages, 39 figures, 6 table

    Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

    Get PDF
    We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
    corecore