38 research outputs found

    Excitation of solar-like oscillations across the HR diagram

    Get PDF
    We extend semi-analytical computations of excitation rates for solar oscillation modes to those of other solar-like oscillating stars to compare them with recent observations. Numerical 3D simulations of surface convective zones of several solar-type oscillating stars are used to characterize the turbulent spectra as well as to constrain the convective velocities and turbulent entropy fluctuations in the uppermost part of the convective zone of such stars. These constraints, coupled with a theoretical model for stochastic excitation, provide the rate 'P' at which energy is injected into the p-modes by turbulent convection. These energy rates are compared with those derived directly from the 3D simulations. The excitation rates obtained from the 3D simulations are systematically lower than those computed from the semi-analytical excitation model. We find that Pmax, the excitation rate maximum, scales as (L/M)^s where s is the slope of the power law and L and M are the mass and luminosity of the 1D stellar model built consistently with the associated 3D simulation. The slope is found to depend significantly on the adopted form of the eddy time-correlation ; using a Lorentzian form results in s=2.6, whereas a Gaussian one gives s=3.1. Finally, values of Vmax, the maximum in the mode velocity, are estimated from the computed power laws for Pmax and we find that Vmax increases as (L/M)^sv. Comparisons with the currently available ground-based observations show that the computations assuming a Lorentzian eddy time-correlation yield a slope, sv, closer to the observed one than the slope obtained when assuming a Gaussian. We show that the spatial resolution of the 3D simulations must be high enough to obtain accurate computed energy rates.Comment: 14 pages ; 7 figures ; accepted for publication in Astrophysics & Astronom

    Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

    Full text link
    We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350\,K below log tau < -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.Comment: A&A, in pres

    The origin of the x-ray emission from the high-velocity cloud MS30.7-81.4-118

    Get PDF
    A soft X-ray enhancement has recently been reported toward the high-velocity cloud MS30.7-81.4-118 (MS30.7), a constituent of the Magellanic Stream. In order to investigate the origin of this enhancement, we have analyzed two overlapping XMM-Newton observations of this cloud. We find that the X-ray enhancement is 6??? or 100 pc across, and is concentrated to the north and west of the densest part of the cloud. We modeled the X-ray enhancement with a variety of spectral models. A single-temperature equilibrium plasma model yields a temperature of and a 0.4-2.0 keV luminosity of 7.9 ?? 1033 erg s-1. However, this model underpredicts the on-enhancement emission around 1 keV, which may indicate the additional presence of hotter plasma (T &amp;#8819; 107 K), or that recombination emission is important. We examined several different physical models for the origin of the X-ray enhancement. We find that turbulent mixing of cold cloud material with hot ambient material, compression or shock heating of a hot ambient medium, and charge exchange reactions between cloud atoms and ions in a hot ambient medium all lead to emission that is too faint. In addition, shock heating in a cool or warm medium leads to emission that is too soft (for reasonable cloud speeds). We find that magnetic reconnection could plausibly power the observed X-ray emission, but resistive magnetohydrodynamical simulations are needed to test this hypothesis. If magnetic reconnection is responsible for the X-ray enhancement, the observed spectral properties could potentially constrain the magnetic field in the vicinity of the Magellanic Stream.open1

    Improved synthetic spectra of helium-core white dwarf stars

    Get PDF
    We examine the emergent fluxes from helium-core white dwarfs following their evolution from the end of pre-white dwarf stages down to advanced cooling stages. For this purpose, we include a detailed treatment of the physics of the atmosphere, particularly an improved representation of the state of the gas by taking into account non-ideal effects according to the so-called occupation probability formalism. The present calculations also incorporate hydrogen line opacity from Lyman, Balmer and Paschen series, pseudo-continuum absorptions and new updated induced-dipole absorption from H2_2-H2_2, H2_2-He and H-He pairs. We find that the non-ideal effects and line absorption alter the appearance of the stellar spectrum and have a significant influence upon the photometric colours in the UBVRI-JHKL system. This occurs specially for hot models T_{\rm eff}\ga 8000 due to line and pseudo-continuum opacities, and for cool models T_{\rm eff}\la 4000 where the perturbation of atoms and molecules by neighbour particles affects the chemical equilibrium of the gas. In the present study, we also include new cooling sequences for helium-core white dwarfs of very low mass (0.160 and 0.148 M⊙_\odot) with metallicity Z=0.02Z=0.02. These computations provide theoretical support to search for and identify white dwarfs of very low mass, specially useful for recent and future observational studies of globular cluster, where these objects have began to be detected.Comment: 15 pages. Accepted for publication in MNRA

    Perspectives in Global Helioseismology, and the Road Ahead

    Get PDF
    We review the impact of global helioseismology on key questions concerning the internal structure and dynamics of the Sun, and consider the exciting challenges the field faces as it enters a fourth decade of science exploitation. We do so with an eye on the past, looking at the perspectives global helioseismology offered in its earlier phases, in particular the mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer datasets coupled with new developments in analysis, have altered, refined, and changed some of those perspectives, and opened others that were not previously available for study. We finish by discussing outstanding challenges and questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures
    corecore