478 research outputs found

    Magnetic field structures of galaxies derived from analysis of Faraday rotation measures, and perspectives for the SKA

    Full text link
    The forthcoming new-generation radio telescope SKA (Square Kilometre Array) and its precursors will provide a rapidly growing number of polarized radio sources. Our analysis aims on what can be learned from these sources concerning the structure and evolution of magnetic fields of external galaxies. Recognition of magnetic structures is possible from Faraday rotation measures (RM{\rm RM}) towards background sources behind galaxies. We construct models for the ionized gas and magnetic field patterns of different azimuthal symmetry (axisymmetric, bisymmetric and quadrisymmetric spiral, and superpositions) plus a halo magnetic field. \RM fluctuations with a Kolmogorov spectrum due to turbulent fields and/or fluctuations in ionized gas density are superimposed. Assuming extrapolated number density counts of polarized sources, we generate a sample of \RM values within the solid angle of the galaxy. Applying various templates, we derive the minimum number of background sources and the minimum quality of the observations. For a large number of sources, reconstruction of the field structure without precognition becomes possible. Any large-scale regular component of the magnetic field can be clearly recognized from \RM data with help of the χ2\chi^2 criterium. Under favourite conditions, about a few dozens of polarized sources are sufficient for a reliable result.Comment: 16 pages, 18 figures, accepted for publication in A&

    Radio sources with ultra-high polarization

    Get PDF
    A sample of 129 unresolved radio sources with ultrahigh linear polarization (>30 per cent) has been selected from the NRAO VLA Sky Survey. Such high average linear polarization is unusual in extragalactic sources. Higher resolution Australia Telescope Compact Array and Very Large Array observations confirm the high average polarization but find that most of these sources are extended. The Sloan Digital Sky Survey spectroscopy, where available, shows that the optical counterparts are elliptical galaxies with no detectable emission lines. The optical spectra, radio luminosity, linear size and spectral index of these sources are typical of radio-loud active galactic nuclei. Galaxy counts within a 1 Mpc radius of the radio sources show that these highly polarized sources are in environments similar to their low polarization (<2 per cent) counterparts. Similarly, the line-of-sight environments of the ultrahigh polarization sources are on average indistinguishable from those of the low-polarization sources. We conclude that the extraordinarily high average polarization must be due to intrinsic properties of the sources, such as an extremely ordered source magnetic field, low internal thermal plasma density or a preferential orientation of the source magnetic field perpendicular to the line of sight.Comment: 23 pages, 15 figures, 6 tables, accepted for publication in MNRAS; v2: some typos correcte

    Magnetic fields in the absence of spiral density waves - NGC 4414

    Full text link
    We present three-frequency VLA observations of the flocculent spiral galaxy NGC 4414 made in order to study the magnetic field structure in absence of strong density wave flows. NGC 4414 shows a regular spiral pattern of observed polarization B-vectors with a radial component comparable in strength to the azimuthal one. The average pitch angle of the magnetic field is about 20\degr, similar to galaxies with a well-defined spiral pattern. This provides support for field generation by a turbulent dynamo without significant ``contamination'' from streaming motions in spiral arms. While the stellar light is very axisymmetric, the magnetic field structure shows a clear asymmetry with a stronger regular field and a smaller magnetic pitch angle in the northern disk. Extremely strong Faraday rotation is measured in the southern part of the disk, becoming Faraday thick at 6cm. The distribution of Faraday rotation suggests a mixture of axisymmetric and higher-mode magnetic fields. The strong Faraday effects in the southern region suggest a much thicker magnetoionic disk and a higher content of diffuse ionized gas than in the northern disk portion. An elongation of the 20cm total power emission is also seen towards the South. Although NGC 4414 is currently an isolated spiral, the asymmetries in the polarized radio emission may be sensitive tracers of previous encounters, including weak interactions which would chiefly affect the diffuse gas component without generating obvious long-term perturbations in the optical structure.Comment: 12 pages, 14 figures, A&A accepte

    MRC B0319-454: Probing the large-scale structure with a giant radio galaxy

    Full text link
    We present an investigation of the relationships between the radio properties of a giant radio galaxy MRC B0319-454 and the surrounding galaxy distribution with the aim of examining the influence of intergalactic gas and gravity associated with the large-scale structure on the evolution in the radio morphology. Our new radio continuum observations of the radio source, with high surface brightness sensitivity, images the asymmetries in the megaparsec-scale radio structure in total intensity and polarization. We compare these with the 3-D galaxy distribution derived from galaxy redshift surveys. Galaxy density gradients are observed along and perpendicular to the radio axis: the large-scale structure is consistent with a model wherein the galaxies trace the ambient intergalactic gas and the evolution of the radio structures are ram-pressure limited by this associated gas. Additionally, we have modeled the off-axis evolution of the south-west radio lobe as deflection of a buoyant jet backflow by a transverse gravitational field: the model is plausible if entrainment is small. The case study presented here is a demonstration that giant radio galaxies may be useful probes of the warm-hot intergalactic medium believed to be associated with moderately over dense galaxy distributions.Comment: 27 pages, 15 figures, accepted for publication in MNRA

    Differential effect of sleep deprivation on place cell representations, sleep architecture, and memory in young and old mice

    Get PDF
    Poor sleep quality is associated with age-related cognitive decline, and whether reversal of these alterations is possible is unknown. In this study, we report how sleep deprivation (SD) affects hippocampal representations, sleep patterns, and memory in young and old mice. After training in a hippocampus-dependent object-place recognition (OPR) task, control animals sleep ad libitum, although experimental animals undergo 5 h of SD, followed by recovery sleep. Young controls and old SD mice exhibit successful OPR memory, whereas young SD and old control mice are impaired. Successful performance is associated with two cellular phenotypes: (1) context cells, which remain stable throughout training and testing, and (2) object configuration cells, which remap when objects are introduced to the context and during testing. Additionally, effective memory correlates with spindle counts during non-rapid eye movement (NREM)/rapid eye movement (REM) sigma transitions. These results suggest SD may serve to ameliorate age-related memory deficits and allow hippocampal representations to adapt to changing environments

    Magnetic field near the central region of the Galaxy: Rotation measure of extragalactic sources

    Get PDF
    To determine the properties of the Faraday screen and the magnetic field near the central region of the Galaxy, we measured the Faraday rotation measure (RM) towards 60 background extragalactic source components through the -6 deg < l <6 deg, -2 deg < b < 2 deg region of the Galaxy using the 4.8 and 8.5 GHz bands of the ATCA and VLA. Here we use the measured RMs to estimate the systematic and the random components of the magnetic fields. The measured RMs are found to be mostly positive for the sample sources in the region. This is consistent with either a large scale bisymmetric spiral magnetic fields in the Galaxy or with fields oriented along the central bar of the Galaxy. The outer scale of the RM fluctuation is found to be about 40 pc, which is much larger than the observed RM size scales towards the non-thermal filaments (NTFs). The RM structure function is well-fitted with a power law index of 0.7 +/- 0.1 at length scales of 0.3 to 100 pc. If Gaussian random processes in the ISM are valid, the power law index is consistent with a two dimensional Kolmogorov turbulence. If there is indeed a strong magnetic field within 1 degree (radius 150 pc) from the GC, the strength of the random field in the region is estimated to be 20 microGauss. Given the highly turbulent magnetoionic ISM in this region, the strength of the systematic component of the magnetic fields would most likely be close to that of the random component. This suggests that the earlier estimated milliGauss magnetic field near the NTFs is localised and does not pervade the central 300 pc of the Galaxy.Comment: 9 pages, 6 figures, accepted for publication in A&

    Ordered magnetic fields around radio galaxies: evidence for interaction with the environment

    Full text link
    We present detailed imaging of Faraday rotation and depolarization for the radio galaxies 0206+35, 3C 270, 3C 353 and M 84, based on Very Large Array observations at multiple frequencies in the range 1365 to 8440 MHz. This work suggests a more complex picture of the magneto-ionic environments of radio galaxies than was apparent from earlier work. All of the sources show spectacular banded rotation measure (RM) structures with contours of constant RM perpendicular to the major axes of their radio lobes. We give a comprehensive description of the banded RM phenomenon and present an initial attempt to interpret it as a consequence of interactions between the sources and their surroundings. We show that the material responsible for the Faraday rotation is in front of the radio emission and that the bands are likely to be caused by magnetized plasma which has been compressed by the expanding radio lobes. A two-dimensional magnetic structure in which the field lines are a family of ellipses draped around the leading edge of the lobe can produce RM bands in the correct orientation for any source orientation. We also report the first detections of rims of high depolarization at the edges of the inner radio lobes of M 84 and 3C 270. These are spatially coincident with shells of enhanced X-ray surface brightness, in which both the field strength and the thermal gas density are likely to be increased by compression.Comment: 21 pages, 15 figures, accepted for publication in MNRAS. Full resolution paper available at http://www.ira.inaf.it/~guidetti/bands/ Subjects: Astrophysics (astro-ph

    Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    Get PDF
    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10−8 in some regions of the cosmic string parameter space

    Pulsar rotation measures and the magnetic structure of our Galaxy

    Get PDF
    We have obtained 63 rotation measures (RMs) from polarization observations of southern pulsars, of which 54 are new measurements and 3 are varied from previous values. The new pulsar RM data at high Galactic latitudes are mostly consistent with the antisymmetric RM distribution found previously. For the Galactic disc, evidence for a field reversal near the Perseus arm, and possibly another beyond it, is presented. Inside the Solar Circle, in addition to the two known field reversals in or near the Carina-Sagittartus arm and the Crux-Scutum arm, a further reversal in the Norma arm is tentatively identified. These reversals, together with the pitch angle derived from pulsar RM and stellar polarization distributions, are consistent with bisymmetric spiral (BSS) models for the large-scale magnetic field structure in the disc of our Galaxy. However, discrimination between models is complicated by the presence of smaller-scale irregularities in the magnetic field, as well as uncertainties in the theoretical modelling.Comment: 10pages; 8 figures; Accepted by MNRA

    Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    Get PDF
    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M⊙–25 M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors
    corecore