3,365 research outputs found

    Stable Increased Formulation Atomisation Using a Multi-Tip Nozzle Device

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Electrohydrodynamic atomisation (EHDA) is an emerging technique for the production of micron and nano-scaled particles. The process often involves Taylor cone enablement, which results in a fine spray yielding formulated droplets, which then undergo drying during deposition. In this work novel multi-tip emiiter (MTE) devices were designed, engineered and utilised for potential up-scaled EHDA, by comparison with a conventional single needle system. To demonstrate this, the active ketoprofen (KETO) was formulated using polyvinylpyrrolidone (PVP) polymer as the matrix material. Here, PVP polymer (5% w/v) solution was prepared using ethanol and distilled water (80:20) as the vehicle. KETO was incorporated as 5% w/w of PVP. Physical properties of resulting solutions (viscosity, electrical conductivity, density and surface tension) were obtained. Formulations were electrosprayed through both single and novel MTEs under EHDA conditions at various flow rates (5-300 μl/min) and applied voltages (0-30 kV). The atomization process using MTEs and single nozzle was monitored at using various process parameters via a digital optical camera. Resulting particles were collected 200mm below processing heads and were analyzed using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Digital recordings confirmed stable MTE jetting at higher flow rates. Electron micrographs confirmed particle size variation arising due to nozzle head design and evidenced stable jetting derived greater near uniform particles. DSC, XRD and TGA confirm KETO molecules were encapsulated and dispersed into PVP polymer particles. In conclusion, novel MTE devices enabled stable atomisation even at higher flow rates when compared to the conventional single needle device. This indicates an exciting approach for scaling-up (EHDA) in contrast to current efforts focusing on multiple nozzle and pore based processing outlets

    Porous Inorganic Drug Delivery Systems—a Review

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities

    The prognostic significance of lysosomal protective protein (Cathepsin A) in breast ductal carcinoma in situ

    Get PDF
    Background: Cathepsin A (CTSA) is a key regulatory enzyme for galactoside metabolism. Additionally, it has a distinct proteolytic activity and plays a role in tumour progression. CTSA is differentially expressed at the mRNA level between breast ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). In this study, we aimed to characterise CTSA protein expression in DCIS and evaluate its prognostic significance. Methods: A large cohort of DCIS (n=776 for pure DCIS and n=239 for DCIS associated with IBC (DCIS/IBC)) prepared as tissue microarray was immunohistochemically stained for CTSA. Results: High CTSA expression was observed in 48% of pure DCIS. High expression was associated with features of poor DCIS prognosis including younger age at diagnosis (less than 50 years), higher nuclear grade, hormone receptor negativity, HER2 positivity, high proliferative index and high hypoxia inducible factor 1 alpha expression. High CTSA expression was associated with shorter recurrence free interval (RFI) (p=0.0001). In multivariate survival analysis for patients treated with breast conserving surgery, CTSA was an independent predictor of shorter RFI (p=0.015). DCIS associated with IBC showed higher CTSA expression than pure DCIS (p=0.04). In the DCIS/IBC cohort, CTSA expression was higher in the invasive component than DCIS component (p less than 0.0001). Conclusion: CTSA is not only associated with aggressive behaviour and poor outcome in DCIS but also a potential marker to predict co-existing invasion in DCIS

    Microneedle Coating Techniques for Transdermal Drug Delivery.

    Get PDF
    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates

    Fibrous polymeric buccal film formulation, engineering and bio-interface assessment

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Polymer based dosages form the mainstay of drug delivery systems either as simple matrix carrier materials or active release behavior modulating agents. In addition, several techniques have been developed further to deliver novel polymeric structures. One such method is electrospinning (ES); a maturing process which is operational at the ambient environment and enables drug loading (in molecularly dispersed form) directly into a fibrous polymer matrix system. Since there is an impending need to address healthcare challenges arising from an increase in the aging population (requiring enhanced treatments), the ES method was used to develop fibrous polymer composite-indomethacin (INDO) films for potential use in the buccal region. Films were assessed for their inter-facial behavior at bio-interfaces (in-vitro and ex-vivo). Polymeric excipients possessing an established profile for commercial dosage form development were selected. Fibrous films (all fibre components <400 nm) were characterised using DSC, TGA, FTIR, Raman and XRD. DSC and XRD demonstrated INDO change from crystalline to amorphous state. FTIR and Raman data suggest INDO, PVP and co-polymers (Methocel™ E5, Methocel™ E15 and Tween® 80) were integrated in stable fashion into filamentous structures via ES. Variable INDO release behavior from several matrices was observed suggesting a potential route to tailor drug release based on polymeric excipient use and ratio. Furthermore, permeation studies using a porcine buccal model demonstrated sustained permeation once dosages are attached to the buccal mucosa. The insoluble nature of cellulose excipients were used to promote sustained release while the use of Tween® 80 surfactant was used to enhance permeation of INDO through polymer interaction with excised tissue. Finally, histology studies indicate polymer excipient selection impacts the bio-interface. In summary, a facile approach to formulate, encapsulate and engineer fibrous polymeric buccal films (on demand) is shown. The method enables drug dispersion directly within the composite polymeric system, which has a clear impact on drug release, in-vitro and ex-vivo bio-interaction

    Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation

    Get PDF
    open access articleEncapsulation of poorly water-soluble drugs into mesoporous materials (e.g. silica) has evolved as a favorable strategy to improve drug solubility and bioavailability. Several techniques (e.g. spray drying, solvent evaporation, microwave irradiation) have been utilized for the encapsulation of active pharmaceutical ingredients (APIs) into inorganic porous matrices. In the present work, a novel chalcone (KAZ3) with anticancer properties was successfully synthesized by Claisen-Schmidt condensation. KAZ3 was loaded into mesoporous (SBA-15 and MCM-41) and non-porous (fumed silica, FS) materials via two techniques; electrohydrodynamic atomization (EHDA) and solvent impregnation. The effect of both loading methods on the physicochemical properties of the particles (e.g. size, charge, entrapment efficiency, crystallinity, dissolution and permeability) was investigated. Results indicated that EHDA technique can load the active in a complete amorphous form within the pores of the silica particles. In contrast, reduced crystallinity (~79%) was obtained for the solvent impregnated formulations. EHDA engineered formulations significantly improved drug dissolution up to 30-fold, compared to the crystalline drug. Ex vivo studies showed EHDA formulations to exhibit higher permeability across rat intestine than their solvent impregnated counterparts. Cytocompatibility studies on Caco-2 cells demonstrated moderate toxicity at high concentrations of the anticancer agent. The findings of the present study clearly show the immense potential of EHDA as a loading technique for mesoporous materials to produce poorly water-soluble API carriers of high payload at ambient conditions. Furthermore, the scale up potential in EHDA technologies indicate a viable route to enhance drug encapsulation and dissolution rate of loaded porous inorganic materials

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO
    corecore