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Abstract 

Electrohydrodynamic atomisation (EHDA) is an emerging technique for the production of micron 

and nano-scaled particles. The process often involves Taylor cone enablement, which results in a 

fine spray yielding formulated droplets, which then undergo drying during deposition. In this work 

novel multi-tip emiiter (MTE) devices were designed, engineered and utilised for potential up-

scaled EHDA, by comparison with a conventional single needle system. To demonstrate this, the 

active ketoprofen (KETO) was formulated using polyvinylpyrrolidone (PVP) polymer as the 

matrix material. Here, PVP polymer (5% w/v) solution was prepared using ethanol and distilled 

water (80:20) as the vehicle. KETO  was incorporated as 5% w/w of PVP. Physical properties of 

resulting solutions (viscosity, electrical conductivity, density and surface tension) were obtained. 

Formulations were electrosprayed through both single and novel MTEs under EHDA conditions 

at various flow rates (5-300 µl/min) and applied voltages (0-30 kV). The atomization process using 

MTEs and single nozzle was monitored at using various process parameters via a digital optical 

camera. Resulting particles were collected 200mm below processing heads and were analyzed 

using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray 

diffraction (XRD) and scanning electron microscopy (SEM). Digital recordings confirmed stable 

MTE jetting at higher flow rates. Electron micrographs confirmed particle size variation arising 

due to nozzle head design and evidenced stable jetting derived greater near uniform particles. DSC, 

XRD and TGA confirm KETO molecules were encapsulated and dispersed into PVP polymer 

particles. In conclusion, novel MTE devices enabled stable atomisation even at higher flow rates 

when compared to the conventional single needle device. This indicates an exciting approach for 

scaling-up (EHDA) in contrast to current efforts focusing on multiple nozzle and pore based 

processing outlets. 

Keywords: Multi-tip emitter (MTE), electrospraying, nanoparticles, microparticles, jetting, 

electrohydrodynamic, encapsulation 
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Introduction  

The last decade has witnessed several engineering advances and developments for nano and micro-

meter scaled particle engineering using methods such as spray drying, emulsification-diffusion, 

supercritical fluids and electrohydrodynamic atomisation (EHDA). The latter is perhaps the most 

recent technological development and has attracted significant interest due to several advantages 

over existing manufacturing and process technologies (e.g. one-step process, simultaneous 

hydrophilic and hydrophobic active incorporation, ease in scaling particle size and facile approach 

to alter general morphology e.g. fiber to particle and vice versa) (1).  

The underlying principle surrounding EHDA is based on the application of an electric field to a 

flowing and electrically conducting liquid, which in many instances is a pharmaceutical 

formulation. This, respectively, is what identifies the ‘Hydro’ and ‘Dynamic’ in the term EHDA. 

The meniscus generated at the nozzle exit becomes highly charged and a stable cone jet is then 

formed. The applied electric field between the tip of the nozzle and the collecting substrate drives 

the process further, overcoming surface tension, yielding a break-up of the jet causing fine droplets 

to form. Upon drying these droplets give rise to medicated particles based on the initial formulation 

(2). Primarily, highly charged micro-meter droplets are formed which then split into finer particles 

due to electrostatic repulsion experienced within the electric field. The mode (and stability) of 

spraying is considered the most significant feature within EHDA processes (2).  

Several physical properties of the formulation (surface tension, density, viscosity and electrical 

conductivity) impact the ease and viability of atomisation. Process parameters such as flow rate, 

applied voltage, distance between nozzle outlet and the collecting platform; dielectric strength of 

the ambient atmosphere and nozzle configuration all have an influence on the architecture and 

morphology of the final structures (3). To date, several EHDA device configurations have been 

developed. Nozzle designs have varied from simple single needles (various diameters) to more 

complex and multiplexed systems. The production of nanoparticles via single needle 

electrospraying, however, entails the application of low flow rates at elevated electric fields. 

Bocanegra et al., 2005 reported that in order to develop a 1 μm droplet, the electric conductivity 

and flow rate of deployed liquid should be 1 mS/m and 10 μl/hr (0.16 μl/min) (4). The use of such 

low formulation flow rates is a major limitation for single needle electrospraying systems for 
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industrial applications, unless several nozzles are used in parallel during the process. The 

requirement of appreciable commercial scale production in shorter timeframes is a key facet for 

most pharmaceutical and biomedical industries. Numerous electrospray configurations have been 

developed aiming to scale-up or demonstrate increased output rates (4-6). For instance, a linear 

array of parallel needles (in square arrangement) has been developed by Rulison and Flagan (1993) 

(5). In 1999, Almekinders and Jones arranged 24 spraying nozzles in a 15cm width standard EHD 

atomizer. Standard oil was used and applied voltages of 35 kV and flow rates between 1000-3333 

μl.min-1 were deployed.  Resulting droplet diameters were in the range 80-400 μm (6) which are 

considered coarse compared to particles produced using a single needle device. Bocanegra et al., 

(2005) developed an array of 37 orifices (instead of nozzles) pierced in dielectric constituents with 

hydrophobic surfaces in a hexagonal pattern (~6 mm) with an extractor which possessed the same 

number of orifices and pattern design to the emitter surface. Up to 115 cone jets were reported per 

square centimetre; whilst deploying a flow rate of 83 μl.min
-1

. Each orifice displayed independent 

single cone-jet formation due to segregation from neighbouring outlets (4). Yang et al., 2010 

developed a hexagonal-distributed multi-needle electrospinning configuration possessing a shield 

ring design in which each set of 3 needles (of the spinneret) were placed as symmetrical triangles. 

Near uniform and smaller nanofibers were produced using more needles on the spinneret (7).  

The flow rate of liquid from single needle setup is typically in the range ~16-20 μl.min
-1 

which 

allows the production of homogenous surface structures. The use of very low flow rates may result 

in reduced dissipation from the nozzle tip and yield irregular structure formation. In contrast, the 

deployment of elevated flow rates can result in very large droplets with incomplete solvent 

evaporation. There exists a direct relationship between particle size and flow rate for a given liquid 

(formulation). For example, Jafari-Nodoushan et al., 2015 reported that by increasing the flow rate 

from 33.3 to 83.3 ml/hr, the average particle diameter increases from 14.6 to 28 μm (8).  

In this work, novel EHDA nozzle and proof-of-concept design is developed which provides 

multiple flow outlets for a single infused electrospraying (or electrospinning) formulation. The 

system consists of multi-tip emitters (MTEs) through which an API-polymer solution is imposed. 

The tips are intended to facilitate charge distribution (via spatial and angled metallic projections) 

throughout the cone and jet, while the voids enable enhanced formulation media inflow. 



5 
 

Conducting tips (from MTE heads) differed in their length indicating the impact of electric field 

and electrical conductivity at the cone even at elevated flow rates. Using hydrophobic anti-

inflammatory drug ‘ketoprofen (KETO)’ as the active pharmaceutical ingredient (API); particle 

size and distribution, drug encapsulation, state and release were explored. The findings indicate an 

alternative and exciting route to scale-up through a directional concept change albeit still 

incorporating all the benefits of EHDA processes.  

Materials and Methods  

Materials  

Crystalline Ketoprofen (KETO), polyvinylpyrrolidone (PVP, high purity grade) (4.4 x 10
4 

g/mol) 

and phosphate buffer saline (PBS) were obtained from Sigma-Aldrich (Gillingham, UK). Ethanol 

(HPLC grade) was purchased from Fisher Scientific (Loughborough, UK). Purified water was 

obtained in house.  

Methods 

Formulation Preparation  

A total volume of 75 mL (5% w/v) PVP solution was prepared using ethanol and distilled water 

(80:20, respectively) as the vehicle. PVP was dissolved in the co-solvent system through 

mechanical stirring for 60 minutes (Jenway, Staffordshire, UK). The resulting solution was sealed 

with parafilm to avoid solvent evaporation. KETO (5% w/w of PVP) was added to the solution 

under mechanical stirring for a further 60 minutes to ensure complete dissolution.  

Physical properties of Solvents and Formulations  

The viscosity, electric conductivity, density and surface tension of all solvents and formulations 

were determined. Viscosity was measured at ambient temperature (23 °C) using a SV-10 Sine- 

wave Vibro Viscometer (A&D, Oxfordshire, UK). A FG3-FIVEGOTM Conductivity Meter 

(Mettler Toledo, Leicester, UK) was used to measure the electrical conductivity of all formulations 

and solvent systems. Here, the probe was calibrated with a standard 12.88 mS/cm solution prior to 

use. Density values were obtained using standard 50 mL pyncnometers (VWR, Leicestershire, 
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UK). Surface tension was estimated using 0/80256E Balance Tensiometer (White Elec. Inst. Co., 

Ltd., Worcestershire, UK) using the DuNuoy platinum ring technique. All measurements were 

performed in triplicate. 

Electrohydrodynamic Atomisation Using MTE and Single Nozzle System   

PVP-KETO formulation was infused into a single stainless steel needle (OD~3mm) and MTE 

spraying head systems (possessing 600 and 1200μm, tip lengths, termed 600MN and 1200MN 

hereafter) at following flow rates: 5, 10, 100 and 300 μl.min
- 1

. The infusion rate was controlled 

using a Harvard Apparatus 11-Elite syringe pump (Harvard Apparatus, Edenbridge, UK). An 

electric field (0 – 30 kV) was supplied via a high voltage power supply (Genvolt, Model 7303). 

Particles were collected at a working distance of 200 mm below device exit (designed and 

engineered at BlueFrog Design and De Montfort University) on glass slide substrates (microscopic 

slides, WWR, Leicester, UK). An image of the EHDA system set-up is shown Figure 1 and Figure 

2 shows components and configuration of MTEs. Figure 3 shows key components of conventional 

nozzle heads and selected recent atomizer designs and current MTE technology.  

Digital and Microscopic Imaging  

Jetting images from spraying heads were captured using a GXCAM Hichrome-Met-UK. Scanning 

electron microscopy (SEM) was performed using SEM Carl Zeiss EVO
® 

HD15 (Carl, Zeiss, 

Oberkochen, Germany). Particles were mounted onto the sample holder (aluminium stub) using 

double-sided tape. Particles were gold coated using a sputter coater S150B (Edwards, Crawley, 

West Sussex, UK) to prevent overcharging. Particle diameter and distribution were examined via 

SEM image analysis program Image Tool in which mean particle diameter and size distribution 

were defined for 100 random measurements as a representation of particle morphology. Contact 

angle behaviour on MTE was measured using “Theta light” (Biolin Scientific Attension, 

Stockholm, Sweden). A droplet of water was placed onto the surface of inverted MTEs which was 

assessed using a video monitor.  
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Differential scanning calorimetry (DSC)  

 

DSC analysis of formulated and atomised particles was performed using a differential scanning 

calorimeter (PerkinElmer Jade DSC (PerkinElmer Ltd., Shelton, CT, USA)). Samples (3.5 - 4.2 

mg) were sealed into aluminium pans (Perkin Elmer) and loaded into sample cells under nitrogen. 

Samples were scanned in the temperature range 20 - 200 °C at an underlying heating rate of 

10°C/min (nitrogen purge of 70 mL/min).  

Thermogravimetric analysis (TGA)  

Thermal behaviour of formulated and atomised particles was evaluated using a thermal gravimetric 

analyser TGA (Perkin Elmer Pyris 1 TGA). Each sample (7-10 mg) was placed in an aluminium 

pan (TGA, Perkin Elmer) and heated at a temperature range of 20 to 800°C in nitrogen atmosphere, 

using a heating rate of 10 °C/min.  

Fourier transform infrared spectroscopy (FTIR)  

The chemical structure of raw materials and electrosprayed particles was investigated by Fourier 

Transform infrared spectroscopy (FT-IR Platinum-ATR fitted with Bruker Alpha Opus 27 FT-IR). 

Infra-red spectra were obtained in the range 4000 - 400 cm
−1 

at a resolution of 4 cm
-1 

for each 

run at the ambient temperature.  

X-ray diffraction studies (XRD)  

Crystallinity of resulting particulate samples was evaluated using XRD analysis performed on a 

Bruker D2- Phaser diffractometer, operating at 40 kV and 40 mA, using Cu Ka1, at a scanning 

rate of 0.35 sec/step. Spectra were collected in 2θ from -3 to + 160 ̊.  

Encapsulation Efficiency and In vitro Release 

Accurately, 1 mg of each particulate material was weighed and dissolved in 3 mL of PBS in capped 

glass vials under magnetic stirring for 10 min. Quantification of KETO was performed using UV-

Vis analysis at 260 nm (UV-Vis spectrophotometer, Shimadzu, UVmini-1240). Experiments were 

run in triplicate. Drug content was calculated using Equation 1:  
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(Eq. 1)      Encapsulation Efficiency (%) = ( W KETO-PRT/ W KETO-USED) x 100 

Where W KETO-PRT is the weight of KETO in particles and W KETO-USED is the theoretical 

quantity of KETO used in formulation.   

The rate of KETO release was determined in PBS (pH 7.4). The release study was performed in 

capped glass vials placed in a shaking water bath at 37 
o
C. 5 mg of electrosprayed samples 

(obtained using flow rates of 10 and 300 μl.min
-1

) were added to 20 mL of PBS buffer solution 

(pH 7.4). At pre-set time intervals, 1 mL of each sample was withdrawn and replaced with an equal 

volume of fresh PBS solution. Samples were assessed in triplicate using single beam scanning 

UV/Visible spectrophotometry (Model M501, Camspec Ltd., UK) at 260 nm. All measurements 

were performed in triplicate. The calibration curve of KETO (in PBS pH 7.4) displayed good 

linearity (r
2 

= 0.999).  

Statistical analysis  

Levene’s test was applied to assess the uniformity of variances. Results were assessed by one-way 

ANOVA test followed by SPSS software (Version 15.0, SPSS Incorporation, USA). p value less 

than 0.05 was considered to be significantly different. 

Results and Discussion  

Solution characterisation  

Formulation physical properties play an important role in predicting and explaining 

electrospraying jetting processes. Table 1 shows solution and formulation characteristics namely; 

surface tension, density, electrical conductivity and viscosity. Surface tension is a limiting step in 

the electrospraying process. It has been reported that the surface tension of a liquid should be less 

than 50 MTE/m to be atomised under the influence of electrical forces (9). In this study, the surface 

tension of all media were in the range 0.032 – 0.038 MTE/m (less than 50MTE/m), in which there 

was no influence of drug or polymer.  

Electrical conductivity refers to the ability of materials to accommodate the transport of electric 
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charges (10). Liquids possessing low electrical conductivities (<10
−6 

μS.cm
−1

) cannot be used 

for electrospraying alone (e.g. heptane) (11). The electric conductivity of ethanol has a higher 

value (0.127 μS.cm
−1

) which increased to 0.605 upon addition of (20%v/v) water, and 

significantly increased by adding drug, polymer or both together.  

Liquid viscosity impacts the size of final structure as this property significantly affects the jet 

break-up process (11). From the data, an increase in viscosity is observed upon addition of water, 

PVP and KETO to pure ethanol solution. Liquid density is related to viscous forces which play a 

role in transmission of electric charge through the jet diameter. Density also has an effect on 

particle size; as increasing density reduces the flow rate required for stable Taylor cone formation 

(11). Data obtained for density shows no significant effect in relation to polymer and API addition.  

MTE design enabled enhanced flow rate input; better suited for large-scale production potential. 

This is timely since most literature involve or details flow rate usage <20 μl.min
-1

. Once 

formulation flows through a capillary under the influence of an applied voltage, various jetting 

modes are encountered through incremental changes to process parameters; mainly applied voltage 

for a given flow rate. However, sprayed particles at this stage will not be near uniform in size. A 

crucial step in the electrospraying process is to achieve the Taylor cone that leads to the production 

of near uniform micron or sub-micron particles (12). The Taylor cone develops in the following 

sequence: at zero applied voltage, a hemispherical droplet evolves at the tip of the nozzle as a 

result of interaction involving liquid surface tension and gravity. Once a voltage is applied, a 

conical shape is formed; which is influenced by polarization from the air/liquid interface. When 

an equilibrium between free liquid surface and sufficient electric field is reached at the tip of the 

nozzle, the Taylor cone is achieved (5,13,14). Contact angle measurements on MTEs (Fig. 4) 

indicate pipetted liquid droplets are able to flow through template voids within 0.2s. This indicates 

clearly that novel MTE systems do not cause liquid/formulation assembly at the outlet interface 

which may arise due to trapped bubbles or air pockets.  

In the current study, two novel MTE configurations (600 and 1200 MN) were used in addition to 

a conventional single needle-nozzle EHDA processing system. Various flow rates (5, 10, 100 and 

300 μl.min
-1

) were selected to investigate jetting stability from MTEs. An electric field was 
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applied (range ~5 - 29 kV) until a stable cone jet was observed. Fig 5 shows jetting images of 

PVP-KETO formulations using single needle, 600 and 1200 MNs processing heads. Observations 

of the single needle system show stable cone-jets which were easily obtained by applying low flow 

rates (e.g. 5 and 10 μl.min
-1

). However, increasing the flow rate to 100 μl.min
-1 

had an adverse 

effect on formulation jetting modes from the single nozzle system. Multi-jets were observed, and 

relatively large droplets were produced. Utilising flow rates between 100-300 μl.min
-1 

leads to 

increased process instability as shown in Fig 5 and various jetting attributes can be seen in Table 

2. Conventionally, low flow rates are ideal for near-uniform micron scaled particle engineering  

using single nozzle systems (12) and this is evident in electron micrographs shown in Fig 6; as 

increasing the flow rate results in larger particles (8). However, the use of low flow rate requires 

applying a low voltage which usually leads to the production of smaller particles (15). This affects 

the quantity of generated particles thus limiting its large-scale potential in pharmaceutical and 

biomedical industries.  

For both MTE configurations (600 and 1200 MN) cone-jet stability at low flow rates (such as 5 

μl.min
-1 

) is compromised and greater formulation flow rates are required (e.g. ≥ 10 μl.min
-1

). 

Spherical and smooth surfaced particles (Figure 6) with narrow size distribution were obtained 

using 10 μl.min
-1 

(all particle were less than 1μm in size, as shown in Figure 7). Furthermore, 

MTE systems required greater voltage application (e.g. ≥ 20 kV) in order to achieve stable cone 

jets and produce particles when deploying high flow rates (e.g. 100 - 150 μl.min
-1

) were deployed. 

This is due to the large number of voids within MTEs; which  required greater electric field 

strength and charge to deform the entire droplets into a cone-jet (16); which subsequently breaks-

up to yield small particles (10).  When increasing the flow rate to 300 μl.min
-1

, both MTEs formed 

a Taylor cone. The meniscus at the apex of the 600 MN system overflowed intermittently and 

spread onto the surrounding surface resulting in particles with broader size distribution (Figure 7). 

This indicates a modulated higher voltage may be needed to electrify the solution and control the 

spraying process.  

The mean particle diameter of electrosprayed particles was found to vary depending on the nozzle 

system. Fig. 7 illustrates the size distribution (histogram) of at least 100 particles from each 
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atomizing system. It was observed that particles produced using 1200 MN (at a high flow rate of 

100 μl.min
-1

) were characterised by a narrow size distribution when compared with the single tip 

nozzle. Here, ~ 52%, ~85% and ~ 90% of particles utilised using single, 600 and 1200 MN systems 

where less than 1μm in size, respectively. Electron micrographs showing electrosprayed particles 

prepared using MTEs (between 100 and 300 μl.min
-1

) were near monodisperse and spherical in 

nature indicating their potential to efficiently fabricate particles as proficiently as single needle 

configurations albeit at increased output rates.  

Encapsulation efficiency and release study  

The impact of flow rate on the KETO-encapsulation efficiency and KETO-release rate was 

studied. Table 3 shows encapsulation efficiency of particles fabricated using single needle, 600 

and 1200 MN at two selected flow rates; 10 and 300 μl.min
-1

. The encapsulation efficiency of 

KETO at 10 μl.min
-1 

was found to be in the range of 79-88%. The values were significantly higher 

than those reported for particles produced at higher flow rates (300 μl.min
-1

); especially for 

particles produced using single needle systems. KETO release from polymeric particles is shown 

in Fig 8. In vitro KETO release from electrosprayed particles produced at 10 μl.min
-1

(Figure 8A) 

exhibit rapid release due to excellent wettability of the polymer matrix (PVP). A sustained release 

period is also apparent which is due to further dissolution of KETO, since KETO co-exists within 

polymeric particles in an amorphous and homogeneous state (17). There was no significant 

difference between KETO release from electrosprayed particles prepared at 10 μl.min
-1 

when 

using single needle, 600 or 1200 MNs.  

However, the case was different after increasing the flow rate to 300 μl.min
-1 

as significant (p 

<0.05) differences were observed for KETO release from single needle and MTEs (Fig 8B). 

~100% of the drug was released in the first hour from particles prepared using the single needle 

while a sustained release profile was obtained for particles prepared using MTEs (600 and 1200 

MNs). Particle size and encapsulation efficiency are known to have a significant influence on the 

drug-release pattern (18). This could be due to the low entrapment efficiency of the drug (~32.14 
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± 5.3%) and the various particle sizes. Large error bars can be seen (Fig 8B) over the release profile 

of KETO-polymeric particles prepared using the single needle system which is a result of the broad 

particle size distribution indicating varied drug encapsulation. However, ~ 45% of the drug was 

released within the first hour and continued with a sustained release profile over the eight hour 

study period.  

Differential scanning calorimetry (DSC)  

Fig 9A shows DSC thermograms of pristine materials (PVP and KETO) in addition to their 

corresponding physical mixture and electrosprayed particles (MTEs prepared samples). 

Thermograms of pure PVP shows an endothermic peak in the range ~171-182 
◦
C, demonstrating 

the hygroscopic nature of the polymer (19). For PVP polymers, the glass transition temperature 

depends on their moisture content and molecular weight (19, 20). Pure KETO exhibits a single 

endothermic peak ranging from 89 to 109 
◦
C, with a melting temperature (Tm) of KETO at 98.3 

◦
C. The physical mixture of PVP-KETO shows a broad endothermic peak with lower intensity and 

lower melting temperature ranging from 60 to 171
◦
C, related to melting temperatures of KETO 

and PVP, identifying the presence of crystalline KETO. The melting peak of KETO could not be 

observed as it overlaps with the broad endothermic peak in addition to the low loading of KETO 

in the physical mixture (21). The low intensity and melting peak of the physical mixture is related 

to the dilution effect of PVP in the mixture (22) and possible heat-induced interactions between 

KETO and PVP (19,23). A clear difference was observed between the physical mixture and 

electrosprayed particles. In the physical mixture, KETO is not dispersed efficiently within the 

polymeric matrix mixture; accordingly, the melting point of the mixture is closer to Tm of the drug 

(24). In the DSC thermogram of electrosprayed PVP-KETO particles (prepared using MTEs), no 

endothermic peaks of KETO are observed, while one endothermic peak ranging from 143-182 
◦
C 

with a transition temperature (at 146.8 ± 0.2 
◦
C) is detected. This indicates a significant reduction 

in KETO crystallinity; in addition to the inhibitory effect of PVP on KETO crystallisation (19). 

This leads to the transformation of KETO into amorphous form (25,26) and/or KETO being 

molecularly dispersed within the polymeric particles and encapsulated in an amorphous state 
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(24,17), regardless of the tip system (600 or 1200 MN). The advantage of this transformation from 

crystalline to amorphous state is that amorphous materials have excess free energy, entropy, 

enthalpy, higher molecular mobility, lower density and higher specific volume in comparison with 

crystalline materials. Amorphous materials can be visualised as supercooled liquids rather than 

solids due to the flexible mechanical properties of amorphous materials (27,28). Moreover, 

amorphous materials are often characterised by better dissolution profiles as less activation energy 

is required to promote dissolution when compared to ordered structure of crystals (29). 

Accordingly, this improves solubility of poorly soluble APIs several folds (28,30) and enhances 

their bioavailability (9,31,32).  

Thermal gravimetric analysis (TGA)  

TGA was used to investigate thermal stability and degradation of electrosprayed particles prepared 

using MTEs. Fig. 9B shows TGA thermograms of pure KETO, PVP and electrosprayed 

PVP/KETO particles. Pure PVP and electrosprayed PVP-KETO particles exhibit two degradation 

steps; the first step is below 200
◦
C, and is due to evaporation of residual solvent or any surface 

adsorbed moisture on particles. The second major step is (from 350-480
◦
C) due to decomposition 

of polymer. The second step for PVP-KETO particles is larger than that observed for pure PVP. 

This also confirms KETO loading in electrosprayed particles using MTEs. As in previous studies, 

it has been reported that any shift (24) or increase (33) in degradation temperature (relating to 

weight loss) also indicates API encapsulation within the polymeric structure.  

Fourier transform infrared spectroscopy (FTIR)  

Changes in KETO structure and any possible interactions between KETO and PVP were 

investigated using FT-IR. Fig 10A shows FT-IR spectra (in the range 4000-400 cm
-1

) of pristine 

materials and electrosprayed particles prepared using MTEs. The FT-IR spectra of PVP shows two 

sharp peak at 2960 cm
-1 

(C-H stretch) and 1644 cm
-1 

(C=O). Two well defined peaks of 

crystalline KETO were visible in the ν(C=O) stretching region: one at 1694 cm
-1 

which indicates 

the stretching vibration of carbonyl group in the dimeric carboxylic acid as KETO molecules bond 

together (forming dimers). The second peak was observed at 1654 cm
-1 

which represents 
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stretching vibration of the carbonyl bond (17,34). In addition, IR spectrum in the region of 860-

640 cm
-1 

indicates presence of aromatic rings (35). These peaks were also observed in physical 

mixture spectrum; in addition a small peak was observed at 1689 cm
-1

. A portion of KETO is still 

available in the crystalline state which is evident from stretching of dimeric KETO (34,36). PVP 

can form hydrogen bonds with KETO; as the polymer has two proton acceptor groups (C=O and 

=N
__

) in its chemical structure. However, the nitrogen atom cannot involve in any intermolecular 

interactions due to the steric hindrance, that gave the advantage to the carbonyl group for hydrogen 

bonding with the carbonyl group of drug (19,25). KETO peaks were not visible in the FTIR spectra 

of the electrosprayed PVP-KETO using (600 and 1200) MTE, indicating the interruption/breakage 

of the interactions between KETO molecules and the formation of hydrogen bonding between the 

hydroxyl group of KETO and the carbonyl group of PVP.  

X-ray diffraction (XRD)  

The physical state of KETO in the electrosprayed samples prepared using MTEs in comparison 

with the physical mixture was investigated using XRD.  

XRD was used to acquire information about molecular arrangement within the crystalline form of 

particles. Fig 10B shows the X-ray diffraction patterns of the KETO and PVP, as raw materials, 

their physical mixture and the electrosprayed particles using MTEs. X-ray pattern demonstrates 

that the KETO exhibited highly crystalline characteristics as several distinct sharp diffraction 

peaks can be observed in the KETO diffractogram. The PVP spectrum shows a diffused 

background pattern with two diffraction halos, which indicates that PVP is amorphous. Sharp 

peaks from KETO can still be observed with dramatic decline of intensity in the physical mixture, 

indicating that KETO is present in crystalline form in the mixture, albeit in reduced quantities. 

According to the literature, by mixing and ground1ing a crystalline drug with a polymeric 

excipient, roughly 50% of the drug becomes amorphous (37) due to the strong interactions between 

the drug and polymer (34). In this instance, PVP chains separate KETO molecules decreasing their 

mobility (37). The sharp diffraction peaks of KETO disappeared in electrosprayed particles 

concluding that all KETO molecules are present in amorphous state using MTEs.  

FTIR spectroscopy and XRD results indicate that all electrosprayed PVP-KETO samples using 
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MTEs are available in amorphous solid dispersions, while the physical mixture has a portion of 

the drug in crystalline form.  

Conclusion  

In conclusion, MTEs enable stable Taylor cones at elevated flow rates when compared to 

traditional single needle systems. This, in turn, results in greater medicated particle production 

rates. Particle size was shown to be more uniform when prepared using MTEs in comparison with 

single needle systems. Overall, MTEs provide an alternative approach for stable increasing particle 

production for EHDA processes.  
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Tables 

 

Table 1. 

 

Solution Viscosity 

(m.Pas) 

Electric 

conductivity 

(µS.cm) 

Density (Kg/m3) Surface tension 

(mN/m) 

Ethanol 0.97 ± 0.01 0.127 ± 0.02 19.4096 ± 0.12 0.035 ± 0.001 

(80:20v/v) 

Ethanol: H2O  

1.55 ± 0.02 0.605 ± 0.01 20.9981 ± 0.09 0.032 ± 0.002 

(1% w/v) KETO 

in (80:20v/v) 

Ethanol: H2O  

1.57 ± 0.01 6.29 ± 0.03 20.9492 ± 0.05 0.033 ±0.002 

(5% w/v) PVP in 

(80:20v/v) 

Ethanol: H2O 

1.58 ± 0.02 10.15 ± 0.01 19.6624± 0.14 0.037 ± 0.002 

*PVP & KETO 

in (80:20v/v) 

Ethanol: H2O 

3.24 ± 0.01 16.54 ± 0.03 20.6029 ± 0.01 0.038 ± 0.001 

*The concentration of PVP is 5% w/v and KETO is 5%w/v of the 5%w/v of PVP. 

 

Table 2.  

MN Flow rate 

(µl.min-1) 

Cone 

shape 

(CS) 

Cone 

diameter 

(d) (cm) 

Cone 

length 

(L) (cm) 

Jet (cm) Spray width (SW) (cm) 

600 100 skewed 0.6 0.3 1.2 0.2 

300 inverted 0.6 0.2 1.1 0.1 

1200 100 skewed 0.7 0.3 0.04 0.6 

300 inverted 0.6 0.3 0.06 1.5 
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Table 3  

 

Flow rate Nozzle configuration Encapsulation efficiency (%) 

10 µl.min-1 Single needle 85.23 ±0.3 

600 MN 79.63 ± 0.2 

1200 MN 87.82 ± 0.3 

300 µl.min-1 Single needle 32.14 ± 5.3 

600 MN 55.34 ± 1.5 

1200 MN  72.62 ± 1.2 

 

 

 


