5,749 research outputs found

    Connection of converters to a low and medium power DC network using an inductor circuit

    Full text link
    This letter describes an alternative for the connection of power converters to a direct current network without the installation of a capacitor in the DC-Link. The circuit allows the connection of converters through a coil and avoids short-circuit currents with different instantaneous values of voltage output. A description of the calculation and the choice of components together with a real implemented example in a DC network within Smart City project (Endes Utility) is presented

    DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein

    Get PDF
    [EN] Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB¿DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during `in situ¿ DNA synthesis. We show that HmtSSB binds to preformed ss-DNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance.We are grateful to Prof. M. Salas laboratory (CBMSO-CSIC) for generously providing the Phi29 DNA polymerase and to Juan P. García Villaluenga (UCM) for useful discussions. Spanish Ministry of Economy and Competitiveness [MAT2015-71806-R to J.R.A-G, FIS2010-17440, FIS2015-67765-R to F.J.C., BFU2012-31825, BFU2015-63714-R to B.I.]; Spanish Ministry of Education, Culture and Sport [FPU13/02934 to J.J., FPU13/02826 to E.B-H.]; National Institutes of Health [GM45925 to L.S.K.]; University of Tampere (to G.L.C.); Programa de Financiacion Universidad Complutense de Madrid-Santander Universidades [CT45/15-CT46/15 to F.C.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BFU2015-63714-R].Morin, J.; Cerrón, F.; Jarillo, J.; Beltran-Heredia, E.; Ciesielski, G.; Arias-Gonzalez, JR.; Kaguni, L.... (2017). DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein. Nucleic Acids Research. 45(12):7237-7248. https://doi.org/10.1093/nar/gkx395S723772484512Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M., & Keck, J. L. (2008). SSB as an Organizer/Mobilizer of Genome Maintenance Complexes. Critical Reviews in Biochemistry and Molecular Biology, 43(5), 289-318. doi:10.1080/10409230802341296Flynn, R. L., & Zou, L. (2010). Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Critical Reviews in Biochemistry and Molecular Biology, 45(4), 266-275. doi:10.3109/10409238.2010.488216Murzin, A. G. (1993). OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. The EMBO Journal, 12(3), 861-867. doi:10.1002/j.1460-2075.1993.tb05726.xKozlov, A. G., Weiland, E., Mittal, A., Waldman, V., Antony, E., Fazio, N., … Lohman, T. M. (2015). Intrinsically Disordered C-Terminal Tails of E. coli Single-Stranded DNA Binding Protein Regulate Cooperative Binding to Single-Stranded DNA. Journal of Molecular Biology, 427(4), 763-774. doi:10.1016/j.jmb.2014.12.020Kuznetsov, S. V., Kozlov, A. G., Lohman, T. M., & Ansari, A. (2006). Microsecond Dynamics of Protein–DNA Interactions: Direct Observation of the Wrapping/Unwrapping Kinetics of Single-stranded DNA around the E.coli SSB Tetramer. Journal of Molecular Biology, 359(1), 55-65. doi:10.1016/j.jmb.2006.02.070Lohman, T. M., & Ferrari, M. E. (1994). Escherichia Coli Single-Stranded DNA-Binding Protein: Multiple DNA-Binding Modes and Cooperativities. Annual Review of Biochemistry, 63(1), 527-570. doi:10.1146/annurev.bi.63.070194.002523Maier, D., Farr, C. L., Poeck, B., Alahari, A., Vogel, M., Fischer, S., … Schneuwly, S. (2001). Mitochondrial Single-stranded DNA-binding Protein Is Required for Mitochondrial DNA Replication and Development in Drosophila melanogaster. Molecular Biology of the Cell, 12(4), 821-830. doi:10.1091/mbc.12.4.821Ruhanen, H., Borrie, S., Szabadkai, G., Tyynismaa, H., Jones, A. W. E., Kang, D., … Yasukawa, T. (2010). Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(8), 931-939. doi:10.1016/j.bbamcr.2010.04.008Farr, C. L., Matsushima, Y., Lagina, A. T., Luo, N., & Kaguni, L. S. (2004). Physiological and Biochemical Defects in Functional Interactions of Mitochondrial DNA Polymerase and DNA-binding Mutants of Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 279(17), 17047-17053. doi:10.1074/jbc.m400283200Van Tuyle, G. C., & Pavco, P. A. (1985). The rat liver mitochondrial DNA-protein complex: displaced single strands of replicative intermediates are protein coated. The Journal of Cell Biology, 100(1), 251-257. doi:10.1083/jcb.100.1.251Clayton, D. A. (1982). Replication of animal mitochondrial DNA. Cell, 28(4), 693-705. doi:10.1016/0092-8674(82)90049-6Farr, C. L., Wang, Y., & Kaguni, L. S. (1999). Functional Interactions of Mitochondrial DNA Polymerase and Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 274(21), 14779-14785. doi:10.1074/jbc.274.21.14779Korhonen, J. A., Gaspari, M., & Falkenberg, M. (2003). TWINKLE Has 5′ → 3′ DNA Helicase Activity and Is Specifically Stimulated by Mitochondrial Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 278(49), 48627-48632. doi:10.1074/jbc.m306981200Miralles Fusté, J., Shi, Y., Wanrooij, S., Zhu, X., Jemt, E., Persson, Ö., … Falkenberg, M. (2014). In Vivo Occupancy of Mitochondrial Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA Replication. PLoS Genetics, 10(12), e1004832. doi:10.1371/journal.pgen.1004832Oliveira, M. T., & Kaguni, L. S. (2011). Reduced Stimulation of Recombinant DNA Polymerase γ and Mitochondrial DNA (mtDNA) Helicase by Variants of Mitochondrial Single-stranded DNA-binding Protein (mtSSB) Correlates with Defects in mtDNA Replication in Animal Cells. Journal of Biological Chemistry, 286(47), 40649-40658. doi:10.1074/jbc.m111.289983Williams, A. J., & Kaguni, L. S. (1995). Stimulation ofDrosophilaMitochondrial DNA Polymerase by Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 270(2), 860-865. doi:10.1074/jbc.270.2.860Bogenhagen, D. F., Wang, Y., Shen, E. L., & Kobayashi, R. (2003). Protein Components of Mitochondrial DNA Nucleoids in Higher Eukaryotes. Molecular & Cellular Proteomics, 2(11), 1205-1216. doi:10.1074/mcp.m300035-mcp200BARAT-GUERIDE, M., DUFRESNE, C., & RICKWOOD, D. (1989). Effect of DNA conformation on the transcription of mitochondrial DNA. European Journal of Biochemistry, 183(2), 297-302. doi:10.1111/j.1432-1033.1989.tb14928.xYang, C., Curth, U., Urbanke, C., & Kang, C. (1997). Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nature Structural Biology, 4(2), 153-157. doi:10.1038/nsb0297-153Raghunathan, S., Ricard, C. S., Lohman, T. M., & Waksman, G. (1997). Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proceedings of the National Academy of Sciences, 94(13), 6652-6657. doi:10.1073/pnas.94.13.6652CURTH, U., URBANKE, C., GREIPEL, J., GERBERDING, H., TIRANTI, V., & ZEVIANI, M. (1994). Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. European Journal of Biochemistry, 221(1), 435-443. doi:10.1111/j.1432-1033.1994.tb18756.xOverman, L. B., & Lohman, T. M. (1994). Linkage of pH, Anion and Cation Effects in Protein-Nucleic Acid Equilibria. Journal of Molecular Biology, 236(1), 165-178. doi:10.1006/jmbi.1994.1126Bhattacharyya, B., George, N. P., Thurmes, T. M., Zhou, R., Jani, N., Wessel, S. R., … Keck, J. L. (2013). Structural mechanisms of PriA-mediated DNA replication restart. Proceedings of the National Academy of Sciences, 111(4), 1373-1378. doi:10.1073/pnas.1318001111Carlini, L. E., Porter, R. D., Curth, U., & Urbanke, C. (1993). Viability and preliminary in vivo characterization of site directed mutants of Escherichia coli single-stranded DNA-binding protein. Molecular Microbiology, 10(5), 1067-1075. doi:10.1111/j.1365-2958.1993.tb00977.xGriffith, J. D., Harris, L. D., & Register, J. (1984). Visualization of SSB-ssDNA Complexes Active in the Assembly of Stable RecA-DNA Filaments. Cold Spring Harbor Symposia on Quantitative Biology, 49(0), 553-559. doi:10.1101/sqb.1984.049.01.062Morrical, S. W., & Cox, M. M. (1990). Stabilization of recA protein-ssDNA complexes by the single-stranded DNA binding protein of Escherichia coli. Biochemistry, 29(3), 837-843. doi:10.1021/bi00455a034Muniyappa, K., Williams, K., Chase, J. W., & Radding, C. M. (1990). Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure. Nucleic Acids Research, 18(13), 3967-3973. doi:10.1093/nar/18.13.3967Wessel, S. R., Marceau, A. H., Massoni, S. C., Zhou, R., Ha, T., Sandler, S. J., & Keck, J. L. (2013). PriC-mediated DNA Replication Restart Requires PriC Complex Formation with the Single-stranded DNA-binding Protein. Journal of Biological Chemistry, 288(24), 17569-17578. doi:10.1074/jbc.m113.478156Bell, J. C., Liu, B., & Kowalczykowski, S. C. (2015). Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife, 4. doi:10.7554/elife.08646Suksombat, S., Khafizov, R., Kozlov, A. G., Lohman, T. M., & Chemla, Y. R. (2015). Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. eLife, 4. doi:10.7554/elife.08193Zhou, R., Kozlov, A. G., Roy, R., Zhang, J., Korolev, S., Lohman, T. M., & Ha, T. (2011). SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell, 146(2), 222-232. doi:10.1016/j.cell.2011.06.036Pant, K., Karpel, R. L., Rouzina, I., & Williams, M. C. (2004). Mechanical Measurement of Single-molecule Binding Rates: Kinetics of DNA Helix-destabilization by T4 Gene 32 Protein. Journal of Molecular Biology, 336(4), 851-870. doi:10.1016/j.jmb.2003.12.025Pant, K., Karpel, R. L., Rouzina, I., & Williams, M. C. (2005). Salt Dependent Binding of T4 Gene 32 Protein to Single and Double-stranded DNA: Single Molecule Force Spectroscopy Measurements. Journal of Molecular Biology, 349(2), 317-330. doi:10.1016/j.jmb.2005.03.065Robberson, D. L., & Clayton, D. A. (1972). Replication of Mitochondrial DNA in Mouse L Cells and Their Thymidine Kinase- Derivatives: Displacement Replication on a Covalently-Closed Circular Template. Proceedings of the National Academy of Sciences, 69(12), 3810-3814. doi:10.1073/pnas.69.12.3810Ciesielski, G. L., Bermek, O., Rosado-Ruiz, F. A., Hovde, S. L., Neitzke, O. J., Griffith, J. D., & Kaguni, L. S. (2015). Mitochondrial Single-stranded DNA-binding Proteins Stimulate the Activity of DNA Polymerase γ by Organization of the Template DNA. Journal of Biological Chemistry, 290(48), 28697-28707. doi:10.1074/jbc.m115.673707Lázaro, J. M., Blanco, L., & Salas, M. (1995). [5] Purification of bacteriophage φ29 DNA polymerase. DNA Replication, 42-49. doi:10.1016/0076-6879(95)62007-9Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-8Bosco, A., Camunas-Soler, J., & Ritort, F. (2013). Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Research, 42(3), 2064-2074. doi:10.1093/nar/gkt1089Smith, S., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258(5085), 1122-1126. doi:10.1126/science.1439819Longley, M. J., Smith, L. A., & Copeland, W. C. (2009). Preparation of Human Mitochondrial Single-Stranded DNA-Binding Protein. Mitochondrial DNA, 73-85. doi:10.1007/978-1-59745-521-3_5Li, K., & Williams, R. S. (1997). Tetramerization and Single-stranded DNA Binding Properties of Native and Mutated Forms of Murine Mitochondrial Single-stranded DNA-binding Proteins. Journal of Biological Chemistry, 272(13), 8686-8694. doi:10.1074/jbc.272.13.8686Jarillo, J., Morín, J. A., Beltrán-Heredia, E., Villaluenga, J. P. G., Ibarra, B., & Cao, F. J. (2017). Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers. PLOS ONE, 12(4), e0174830. doi:10.1371/journal.pone.0174830Bujalowski, W., & Lohman, T. M. (1986). Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry, 25(24), 7799-7802. doi:10.1021/bi00372a003Thömmes, P., Farr, C. L., Marton, R. F., Kaguni, L. S., & Cotterill, S. (1995). Mitochondrial Single-stranded DNA-binding Protein fromDrosophilaEmbryos. Journal of Biological Chemistry, 270(36), 21137-21143. doi:10.1074/jbc.270.36.21137Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in  29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019Chrysogelos, S., & Griffith, J. (1982). Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. Proceedings of the National Academy of Sciences, 79(19), 5803-5807. doi:10.1073/pnas.79.19.5803Hamon, L., Pastre, D., Dupaigne, P., Breton, C. L., Cam, E. L., & Pietrement, O. (2007). High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein--DNA complexes. Nucleic Acids Research, 35(8), e58-e58. doi:10.1093/nar/gkm147Takamatsu, C., Umeda, S., Ohsato, T., Ohno, T., Abe, Y., Fukuoh, A., … Kang, D. (2002). Regulation of mitochondrial D‐loops by transcription factor A and single‐stranded DNA‐binding protein. EMBO reports, 3(5), 451-456. doi:10.1093/embo-reports/kvf099Wang, Y., & Bogenhagen, D. F. (2006). Human Mitochondrial DNA Nucleoids Are Linked to Protein Folding Machinery and Metabolic Enzymes at the Mitochondrial Inner Membrane. Journal of Biological Chemistry, 281(35), 25791-25802. doi:10.1074/jbc.m604501200Brown, T. A. (2005). Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes & Development, 19(20), 2466-2476. doi:10.1101/gad.135210

    Transition between Variscan and Alpine cycles in the Pyrenean-Cantabrian Mountains (N Spain): Geodynamic evolution of near-equator European Permian basins

    Get PDF
    In the northern Iberian Peninsula, the Pyrenean-Cantabrian orogenic belt extends E-W for ca. 1000 km between the Atlantic Ocean and Mediterranean Sea. This orogen developed from the collision between Iberia and Eurasia, mainly in Cenozoic times. Lower-middle Permian sediments crop out in small, elongated basins traditionally considered independent from each other due to misinterpretations on incomplete lithostratigraphic data and scarce radiometric ages. Here, we integrate detailed stratigraphic, sedimentary, tectonic, paleosol and magmatic data from well-dated lithostratigraphic units. Our data reveal a similar geodynamic evolution across the Pyrenean-Cantabrian Ranges at the end of the Variscan cycle. Lower-middle Permian basins started their development under an extensional regime related to the end of the Variscan Belt collapse, which stars in late Carboniferous times in the Variscan hinterland. This orogenic collapse transitioned to Pangea breakup at the middle Permian times in the study region. Sedimentation occurred as three main tectono-sedimentary extensional phases. A first phase (Asselian-Sakmarian), which may have even started at the end of the Carboniferous (Gzhelian) in some sections, is mainly represented by alluvial sedimentation associated with calc-alkaline magmatism. A second stage (late Artinskian-early Kungurian), represented by al-luvial, lacustrine and palustrine sediments with intercalations of calc-alkaline volcanic beds, shows a clear up-ward aridification trend probably related to the late Paleozoic icehouse-greenhouse transition. The third and final stage (Wordian-Capitanian) comprised of alluvial deposits with intercalations of alkaline and mafic beds, rarely deposited in the Cantabrian Mountains, and underwent significant pre-and Early Mesozoic erosion in some segments of the Pyrenees. This third stage can be related to a transition towards the Pangea Supercontinent breakup, not generalized until the Early/Middle Triassic at this latitude because the extensional process stopped about 10 Myr (Pyrenees) to 30 Myr (Cantabrian Mountains). When compared to other well-dated basins near the paleoequator, the tectono-sedimentary and climate evolution of lower-middle Permian basins in Western and Central Europe shows common features. Specifically, we identify coeval periods with magmatic activity, extensional tectonics, high subsidence rates and thick sedi-mentary record, as well as prolonged periods without sedimentation. This comparison also identifies some evolutionary differences between Permian basins that could be related to distinct locations in the hinterland or foreland of the Variscan orogen. Our data provide a better understanding of the major crustal re-equilibration and reorganization that took place near the equator in Western-Central Europe during the post-Variscan period

    Dual ifgMosaic: A Versatile Method for Multispectral and Combinatorial Mosaic Gene-Function Analysis

    Get PDF
    Improved methods for manipulating and analyzing gene function have provided a better understanding of how genes work during organ development and disease. Inducible functional genetic mosaics can be extraordinarily useful in the study of biological systems; however, this experimental approach is still rarely used in vertebrates. This is mainly due to technical difficulties in the assembly of large DNA constructs carrying multiple genes and regulatory elements and their targeting to the genome. In addition, mosaic phenotypic analysis, unlike classical single gene-function analysis, requires clear labeling and detection of multiple cell clones in the same tissue. Here, we describe several methods for the rapid generation of transgenic or gene-targeted mice and embryonic stem (ES) cell lines containing all the necessary elements for inducible, fluorescent, and functional genetic mosaic (ifgMosaic) analysis. This technology enables the interrogation of multiple and combinatorial gene function with high temporal and cellular resolution.This work was supported by grants to the PI R.B. from the Spanish Ministry of Economy, Industry and Competitiveness (SAF2013-44329-P, SAF2013-42359-ERC, and RYC-2013-13209) and European Research Council (ERC-2014-StG - 638028). S.P.-Q., M.F.-C., and I.G.-G. were supported by PhD fellowships from Fundacion La Caixa (CX-SO-2013-02, CX\_E-2015-01, and CX-SO-16-1, respectively). W.L. by a FP7-PEOPLE-2012-COFUND GA600396 postdoctoral contract. We thank Simon Bartlett for English editing, Ralf H. Adams for sharing the Cdh5(PAC)-CreERT2 mice, Jose Luis de La Pompa for comments throughout the project and for sharing the Tie2-Cre mice, Gonzalo Gancedo for the help with the mouse colony, Valeria Caiolfa for the help with the microscopy, and all the members of the CNIC gene targeting, transgenesis, cellomics, and microscopy units. The CNIC is supported by MEIC/MINECO and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators

    Measurement of Leptonic Asymmetries and Top Quark Polarization in ttbar Production

    Get PDF
    We present measurements of lepton (l) angular distributions in ttbar -> W+ b W- b -> l+ nu b l- nubar bbar decays produced in ppbar collisions at a center-of-mass energy of sqrt(s)=1.96TeV, where l is an electron or muon. Using data corresponding to an integrated luminosity of 5.4fb^-1, collected with the D0 detector at the Fermilab Collider, we find that the angular distributions of l- relative to anti-protons and l+ relative to protons are in agreement with each other. Combining the two distributions and correcting for detector acceptance we obtain the forward-backward asymmetry A^l_FB = (5.8 +- 5.1(stat) +- 1.3(syst))%, compared to the standard model prediction of A^l_FB (predicted) = (4.7 +- 0.1)%. This result is further combined with the measurement based on the analysis of the l+jets final state to obtain A^l_FB = (11.8 +- 3.2)%. Furthermore, we present a first study of the top-quark polarization.Comment: submitted versio

    Search for B0π0π0B^{0}\to \pi^{0}\pi^{0} Decay

    Get PDF
    We have searched for the charmless hadronic decay of B0 mesons into two neutral pions. Using 9.13fb^-1 taken at the Upsilon(4S) with the CLEO detector, we obtain an improved upper limit for the branching fraction BR(B0-->pi0pi0) < 5.7*10^-6 at the 90% confidence level.Comment: pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Search for Zgamma events with large missing transverse energy in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present the first search for supersymmetry (SUSY) in Zgamma final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb-1 collected with the D0 experiment in ppbar collisions at sqrt(s)=1.96 TeV. This signature is predicted in gauge-mediated SUSY-breaking models, where the lightest neutralino is the next-to-lightest supersymmetric particle (NLSP) and is produced in pairs, possibly through decay from heavier supersymmetric particles. The NLSP can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for SUSY breaking scales of Lambda < 87 TeV, corresponding to neutralino masses of < 151 GeV.Comment: submitted to Phys. Rev. Let

    Measurement of the top quark mass using the matrix element technique in dilepton final states

    Get PDF
    We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7  fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84  GeV

    Search for the Higgs boson in lepton, tau and jets final states

    Get PDF
    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb^{-1} of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively
    corecore