93 research outputs found
Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions
Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking
Mesophyll diffusion conductance to CO 2: An unappreciated central player in photosynthesis
Mesophyll diffusion conductance to CO 2 is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g m, and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance.Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.The study was financially supported by the Estonian Ministry of Science and Education (grant SF1090065s07), the Spanish Ministry of Science and Innovation through projects BFU2008-01072 (MEFORE), AGL2009-11310/AGR, BFU2011-23294 (MECOME) and CGL2009-13079-C02-01 (PALEOISOTREE), and the European Commission through European Regional Fund (the Estonian Center of Excellence in Environmental Adaptation), and the Marie Curie project MC-ERG-246725 (FP7). J.P.F. is supported by the Ramón y Cajal program (RYC-2008-02050). A.G. had a Swiss National Science Fellowship (PA00P3_126259). M.M.B. and C.R.W are supported by Future Fellowships from the Australian Research Council (FT0992063 and FT100100024). C.D. was supported by a grant from the French government and by the cooperation project Tranzfor (Transferring Research between EU and Australia–New Zealand on Forestry and Climate Change, PIRSES-GA-2008-230793) funded by the European Union
Metabolic compensation constrains the temperature dependence of gross primary production
Gross primary production (GPP) is the largest flux in the carbon cycle, yet its response to global warming is highly uncertain. The temperature dependence of GPP is directly linked to photosynthetic physiology, but the response of GPP to warming over longer timescales could also be shaped by ecological and evolutionary processes that drive variation in community structure and functional trait distributions. Here, we show that selection on photosynthetic traits within and across taxa dampens the effects of temperature on GPP across a catchment of geothermally heated streams. Autotrophs from cold streams had higher photosynthetic rates and after accounting for differences in biomass among sites, biomass-specific GPP was independent of temperature in spite of a 20 °C thermal gradient. Our results suggest that temperature compensation of photosynthetic rates constrains the long-term temperature dependence of GPP, and highlights the importance of considering physiological, ecological and evolutionary mechanisms when predicting how ecosystem-level processes respond to warming
Influence of diurnal variation in mesophyll conductance on modelled 13C discrimination: results from a field study
Mesophyll conductance to CO2 (gm) limits carbon assimilation and influences carbon isotope discrimination (Δ) under most environmental conditions. Current work is elucidating the environmental regulation of gm, but the influence of gm on model predictions of Δ remains poorly understood. In this study, field measurements of Δ and gm were obtained using a tunable diode laser spectroscope coupled to portable photosynthesis systems. These data were used to test the importance of gm in predicting Δ using the comprehensive Farquhar model of Δ (Δcomp), where gm was parameterized using three methods based on: (i) mean gm; (ii) the relationship between stomatal conductance (gs) and gm; and (iii) the relationship between time of day (TOD) and gm. Incorporating mean gm, gs-based gm, and TOD-based gm did not consistently improve Δcomp predictions of field-grown juniper compared with the simple model of Δ (Δsimple) that omits fractionation factors associated with gm and decarboxylation. Sensitivity tests suggest that b, the fractionation due to carboxylation, was lower (25‰) than the value commonly used in Δcomp (29‰) and Δsimple (27‰). These results demonstrate the limits of all tested models in predicting observed juniper Δ, largely due to unexplained offsets between predicted and observed values that were not reconciled in sensitivity tests of variability in gm, b, or e, the day respiratory fractionation
Lifestyle factors and visceral adipose tissue: Results from the PREDIMED-PLUS study
Background: Visceral adipose tissue (VAT) is a strong predictor of cardiometabolic health, and lifestyle factors may have a positive influence on VAT depot. This study aimed to assess the cross-sectional associations between baseline levels of physical activity (PA), sedentary behaviours (SB) and adherence to the Mediterranean diet (MedDiet) with VAT depot in older individuals with overweight/obesity and metabolic syndrome.
Methods: Baseline data of the PREDIMED-Plus study including a sample of 1,231 Caucasian men and women aged 55-75 years were used. Levels of leisure-time PA (total, light, and moderate-to-vigorous, in METs·min/day) and SB (total and TV-viewing, in h/day) were evaluated using validated questionnaires. Adherence to the MedDiet was evaluated using a 17-item energy-restricted MedDiet (erMedDiet) screener. The chair-stand test was used to estimate the muscle strength. VAT depot was assessed with DXA-CoreScan. Multivariable adjusted linear regression models were used to evaluate the association between lifestyle factors and VAT. For the statistics we had used multiadjusted linear regression models.
Results: Total leisure-time PA (100 METs·min/day: β -24.3g, -36.7;-11.9g), moderate-to-vigorous PA (β -27.8g, 95% CI -40.8;-14.8g), chair-stand test (repeat: β -11.5g, 95% CI -20.1;-2.93g) were inversely associated, and total SB (h/day: β 38.2g, 95% CI 14.7;61.7) positively associated with VAT. Light PA, TV-viewing time and adherence to an erMedDiet were not significantly associated with VAT.
Conclusions: In older adults with overweigh/obesity and metabolic syndrome, greater PA, muscle strength, and lower total SB were associated with less VAT depot. In this study, adherence to an erMedDiet was not associated with lower VAT
Positively selected amino acid replacements within the RuBisCO enzyme of oak trees are associated with ecological adaptations
Phylogenetic analysis by maximum likelihood (PAML) has become the standard approach to study positive selection at the molecular level, but other methods may provide complementary ways to identify amino acid replacements associated with particular conditions. Here, we compare results of the decision tree (DT) model method with ones of PAML using the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the global genus diversity. It has been hypothesized that RuBisCO has evolved differentially depending on the environmental conditions and leaf traits governing internal gas diffusion patterns. Here, we show, using PAML, that amino acid replacements at the residue positions 95, 145, 251, 262 and 328 of the RuBisCO large subunit have been the subject of positive selection along particular Quercus lineages associated with the leaf traits and climate characteristics. In parallel, the DT model identified amino acid replacements at sites 95, 219, 262 and 328 being associated with the leaf traits and climate characteristics, exhibiting partial overlap with the results obtained using PAML
Long daytime napping is associated with increased adiposity and type 2 diabetes in an elderly population with metabolic syndrome
Research examining associations between objectively-measured napping time and type
2 diabetes (T2D) is lacking. This study aimed to evaluate daytime napping in relation to T2D and
adiposity measures in elderly individuals from the Mediterranean region. A cross-sectional analysis of
baseline data from 2190 elderly participants with overweight/obesity and metabolic syndrome, in the
PREDIMED-Plus trial, was carried out. Accelerometer-derived napping was measured. Prevalence
ratios (PR) and 95% confidence intervals (CI) for T2D were obtained using multivariable-adjusted
Cox regression with constant time. Linear regression models were fitted to examine associations of
napping with body mass index (BMI) and waist circumference (WC). Participants napping ≥90 min
had a higher prevalence of T2D (PR 1.37 (1.06, 1.78)) compared with those napping 5 to <30 min per
day. Significant positive associations with BMI and WC were found in those participants napping
≥30 min as compared to those napping 5 to <30 min per day. The findings of this study suggest that
longer daytime napping is associated with higher T2D prevalence and greater adiposity measures in
an elderly Spanish population at high cardiovascular risk
Isotemporal substitution of inactive time with physical activity and time in bed: Cross-sectional associations with cardiometabolic health in the PREDIMED-Plus study
© 2019 The Author(s). Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-To-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health. Trial registration: The trial was registered at the International Standard Randomized Controlled Trial (ISRCTN: http://www.isrctn.com/ISRCTN89898870) with number 89898870 and registration date of 24 July 2014, retrospectively registered
Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMEDPlus study
Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-to-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults.
Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults.
Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05).
Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health
- …