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Abstract

Phylogenetic analysis by maximum likelihood (PAML) has become the standard approach

to study positive selection at the molecular level, but other methods may provide comple-

mentary ways to identify amino acid replacements associated with particular conditions.

Here, we compare results of the decision tree (DT) model method with ones of PAML using

the key photosynthetic enzyme RuBisCO as a model system to study molecular adaptation

to particular ecological conditions in oaks (Quercus). We sequenced the chloroplast rbcL

gene encoding RuBisCO large subunit in 158 Quercus species, covering about a third of the

global genus diversity. It has been hypothesized that RuBisCO has evolved differentially

depending on the environmental conditions and leaf traits governing internal gas diffusion

patterns. Here, we show, using PAML, that amino acid replacements at the residue posi-

tions 95, 145, 251, 262 and 328 of the RuBisCO large subunit have been the subject of posi-

tive selection along particular Quercus lineages associated with the leaf traits and climate

characteristics. In parallel, the DT model identified amino acid replacements at sites 95,

219, 262 and 328 being associated with the leaf traits and climate characteristics, exhibiting

partial overlap with the results obtained using PAML.

Introduction

RuBisCO is one of the best-studied enzymes and is often used as a model protein in evolution-

ary studies. During photosynthesis, RuBisCO binds CO2 to the Calvin cycle intermediate ribu-

lose-1,5-bisphosphate (RuBP), thereby acting as the essential entry point for carbon into the

biosphere. Due to its imperfect ability to distinguish between CO2 and O2, RuBisCO also
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catalyzes the oxygenation of RuBP, giving rise to the energy-dissipating process of photorespi-

ration. Compared to other catalysts, RuBisCO is a sluggish enzyme, with a catalytic turnover

rate (kcat
c) of about 3 s−1 in terrestrial plants [1]. Alongside these catalytic imperfections and

its large molecular weight, RuBisCO also represents a significant nitrogen investment, typically

accounting for 25–30% of the leaf total nitrogen in C3 plants [2].

The photosynthetic process adapts to abiotic stress, such as high temperature or water defi-

cit [3, 4, 5], by optimizing leaf conductance (stomatal and mesophyll) governing CO2 diffusion

[6] and by adjustments in the activity and concentration of RuBisCO and other rate limiting

enzymes [7, 8, 5]. Temperature and CO2 concentration at RuBisCO active sites are the main

driving forces of RuBisCO evolution and adaptation [9, 10, 11, 12, 13, 14, 15]. Computational

analysis of carbon uptake at the leaf [16] and canopy level [17] also suggests that optimization

of RuBisCO kinetics in modern C3 plants depends on the temperature regime and CO2 con-

centration. Therefore, plants from dry environments and plants with high leaf mass per area

have the lowest CO2 diffusion, and tend to have higher RuBisCO affinity for CO2 [12, 18]. By

contrast, plants possessing the C4 carbon concentration mechanism have faster, but less CO2

specific RuBisCO [19, 20, 21, 22, 23, 24]. High temperatures decrease the ratio of CO2/O2 dis-

solved in the leaf liquid media, and directly decreases the affinity of RuBisCO for CO2 [25].

Accordingly, adaptation to higher temperatures can be achieved by a greater specificity of

RuBisCO for CO2 (Sc/o), thereby reducing the loss of carbon due to photorespiration. Selection

pressure on RuBisCO with increased Sc/o in hot environments has been demonstrated in some

thermophilic red algae [26] and in terrestrial plants [12]. Because of the trade-off between

RuBisCO affinity for CO2 and maximum carboxylase activity (kcat
c), the selection for increased

affinity for CO2 would inevitably take place at the expense of decreased kcat
c [13, 14]. Such

fine-tuning of RuBisCO kinetic traits is attributed to environmentally driven changes at the

molecular level, most likely amino acid replacements within the catalytic large subunit.

In higher plants and green algae, the structure of RuBisCO consists of eight chloroplast-

encoded large (L, 50–55 kDa) and eight nucleus-encoded small (S, 12–18 kDa) subunits assem-

bled into a hexadecamer [27]. Large subunits possess the active site and therefore primarily

determine RuBisCO kinetic traits [28], although recent studies demonstrate that S-subunits

can also influence catalysis [29, 30, 31]. Directed mutagenesis and a variety of recombinant

RuBisCOs from plastome-transformed plants allowed identifying molecular changes in L-sub-

unit that translate into changes in RuBisCO catalysis, as well as determining how they affected

photosynthesis and plant growth [32, 33, 34, 35, 36, 37]. Recent studies have demonstrated the

relationship between amino acid polymorphism in the L-subunit of RuBisCO and catalytic

efficiency in natural vegetation and crops, by comparing both distant phylogenetic lineages

[18, 38, 39] and closely related species [15, 40] of land plants.

Studies comparing the rates of non-synonymous and synonymous substitutions along phy-

logenies have demonstrated that positive Darwinian selection is acting on RuBisCO within

most lineages of plants, but is restricted to a relatively small number of residues [41, 42, 43, 44,

45, 46, 47, 48, 49]. Results derived from analyses of RuBisCO molecular adaptation comple-

ment trends in RuBisCO kinetics and confirm the predominant role of some environmental

and physiological factors driving RuBisCO evolution. For example, signatures of positive selec-

tion are associated with changes in intracellular concentrations of CO2 driven by carbon-con-

centrating mechanisms, both in algae and terrestrial C4 plants [43, 48, 49, 50].

Mapping positively selected residues within the protein structure helps to locate catalytically

important regions of RuBisCO, and suggests candidate amino acid replacements which could

be implemented to optimize RuBisCO performance in crops [42, 48, 49]. However, the effect

of an amino acid replacement on protein properties could vary in the presence of other muta-

tions, either individually or together, because of the molecular sign epistasis among mutations
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[51]. These epistatic interactions impose strong selective constraints on amino acid replace-

ments and also may explain the failure of most attempts to improve RuBisCO catalysis by sin-

gle point mutations [34, 52]. In agreement with this prediction, positive selection analysis

must also account for co-adaptive amino acid replacements through the identification of

coevolutionary signatures to find how key residue changes affect RuBisCO structure and func-

tion. Coevolutionary studies have been applied to various proteins [53, 54, 55], but only

recently to RuBisCO [47, 56]. It has been shown that coevolution of residues is common in

RuBisCO of land plants and there is an overlap between coevolving and positively selected res-

idues [56].

Evolutionary analyses are needed to identify adaptive changes in the Rubisco sequence, but

the drivers of such evolution must also be investigated. In this paper, we used a predictive

model called decision tree (DT), which is able to statistically associate a combination of envi-

ronmental variables to variation in the amino acid residues. A DT can be used for both classifi-

cation (classification tree) and regression (regression tree) tasks. We used this model for

classification tasks, which are frequently employed in applied fields such as engineering and

medicine [57, 58, 59, 60, 61]. A DT implicitly performs feature selection and requires relatively

little effort for data preparation. The analysis is straightforward, the results shown graphically

and they can be easily interpreted.

The objective of the study was to investigate molecular adaptation of Quercus RuBisCO to

particular ecological conditions and to test if leaf morphological traits are associated with

adaptive amino acid substitutions. To achieve this, we compared two different methodologies:

the DT model and phylogenetic analysis by maximum likelihood. We selected oak (Quercus)
species as a model group for this study because this genus contains a large number of species

(ca. 500) inhabiting a wide range of environments. Both evergreen and deciduous oak species

have contrasting leaf morphology [62], and therefore variable diffusive limitations to CO2

transfer from the atmosphere to the site of carboxylation [63]. Finally, oaks are often an ecosys-

tem-defining species in most broad-leaved forests worldwide making them an ecologically

important group.

Materials and methods

Taxon selection and sampling

A total of 174 species in Fagales were selected for the study (S1 Table). These species belong to

the Fagaceae (n = 170) and Nothofagaceae (n = 4). Within Fagaceae, the majority of the species

belong to Quercus (n = 158; ca. 30% of the total number of Quercus species).

Each species was classified according to its geographic distribution, prevalent climate and

leaf habit (S1 Table). The geographic distribution area of each species was assigned according

to Govaerts et al. (1998) [64] and information found in publicly available databases [65, 66, 67,

68]. The prevalent climate was obtained by overlapping the species geographical distribution

in our study and the Köppen-Geiger world map of climate classification [69]. To simplify the

analysis, fifteen Köppen-Geiger climate types were grouped into six: 1) tropical (including cli-

mates Af, Am and Aw according to Köppen-Geiger classification); 2) arid steppe (Bsh and

Bsk); 3) temperate with dry winter and hot or warm summer (Cwa and Cwb); 4) temperate

with dry summer and hot or warm summer (Csa and Csb); 5) temperate or cold without dry

season and hot or warm summer (Cfa, Cfb, Dfa and Dfb) and 6) cold with dry summer and

hot or warm summer (Dsa, andDsb) (S2 Table). Regarding the leaf habit, species were classi-

fied as evergreens (those species retaining their leaves during the whole year), deciduous

(when losing all leaves during the unfavourable season) and semi-evergreen (those species that

lose some leaves during the unfavourable season, depending on its length and severity).

Molecular evolution of RuBisCO in Quercus (Fagaceae)
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Leaves from all species were sampled from living collections of Jardı́n Botánico de Iturrarán

(Parque Natural de Pagoeta, Aya, Guipúzcoa, Spain), with the exceptions of Q. palmeri, Q.

baloot and Q. vaccinifolia, which were collected from The Cheviton Barton collection (Bevon,

UK). For each species, leaf density was calculated from leaf thickness and leaf mass area

(LMA) measurements performed on fully expanded leaves that developed in the external part

of the tree canopy (i.e., exposed to full solar irradiation). The leaf thickness of each species was

measured on two discs (disc area = 0.33 cm2) per leaf from five fully hydrated leaves, collected

from three to five different individuals. The leaf thickness was measured using a digital contact

sensor GTH10L coupled to an amplifier GT-75AP (GT Series, Keyence Corporation, Japan)

[70]. Afterwards, LMA of each disc was calculated as the ratio between the dry weight and the

area. The dry weight was obtained after drying the leaf discs in a ventilated oven at 60˚C until

constant weight (typically after 2 days).

DNA sequencing

Total genomic DNA was extracted from leaf material using the DNeasy Plant Mini Kit (Qiagen

Ltd., Crawley, UK) according to the manufacturer’s protocol.

We sequenced chloroplast genes rbcL and matK [71, 72]. To obtain the full rbcL sequence

(1428 nucleotides), the gene was amplified using primers esp2F (5´-AATTCATGAGTTG
TAGGGAGGGACTT-3´) and 1494R (5´-GATTGGGCCGAGTTTAATTTAC-3´). The matK
gene was amplified in 43 species using the primer X390_F (5´- CGATCTATTCATTCAAT
ATTTC-3´) and Xmatk9_R (5´-CAATCATTCGTGATTGGCCAG -3´). For 42 species,

we obtained the nuclear microsatellite loci (SSRs) from [73] (QmC00716, QmC01095,

QmC01990, QmC02241) and from [74] (ssrQpZAG15, ssrQpZAG46, ssrQpZAG110,

ssrQrZAG-7, ssrQrZAG-20).

All PCR reactions were performed using the BioMix Red reagent mix (Bioline Ltd., Lon-

don, UK). The PCR program for the amplification of the rbcL comprised an initial denatur-

ation at 95˚C, 2 min, and 36 cycles of 93˚C for 30 s, 53˚C for 30 s and 72˚C for 3.5 min, and a

final extension at 72˚C for 30 min. The PCR program for the amplification of the matK gene

comprised an initial denaturation at 95˚C for 2 min, followed by 35 cycles of 30 s at 94˚C

(denaturing), 45 s at the annealing temperature of 56˚C, 2 min at 72˚C (extension), and a final

extension phase of 7 min at 72˚C. The microsatellites were amplified using the following PCR

conditions: 95˚C for 2 min, and 35 cycles of 95˚C for 30 s, 50˚C for 30 s and 72˚C for 2 min,

and a final extension at 72˚C for 5 min. The rbcL and matK PCR products were separated on

2% agarose gels buffered with 1X TAE and purified using Roche High Pure PCR Product Puri-

fication Kit (Roche Diagnostics Corporation P.O., Indiana, USA). Chloroplast gene sequenc-

ing was performed using an ABI 3130 Genetic analyzer with the ABI BigDyeTM Terminator

Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, California, USA). For

microsatellites, we used the ABI 3130 XL Genetic analyzer and fragment analysis was per-

formed using the GeneMapper software v4.1 (Applied Biosystems). The DNA sequences from

the chloroplast markers were aligned using Clustal X [75] and manually adjusted with Bioedit

v.7.2.5 [76]. All variable sites were checked against the original sequence chromatograms, and

doubtful regions were sequenced again. All newly generated sequences were submitted to the

GenBank (S3 Table).

Phylogenetic analyses

We inferred the phylogenetic relationships from the nucleotide data using Bayesian inference

(BI). We constructed a phylogeny using rbcL sequences from the 158 Quercus species (denoted

Quercus large dataset) (Fig 1). The tree topology was not fully resolved for this group when
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using only one gene. Because we require a robust phylogeny to detect adaptive evolution by

maximum likelihood, we chose a subset of species to construct a multilocus tree with better-

resolved topology. The tree was constructed with a concatenated alignment of 45 rbcL, 43

matK and 42 SSRs for Quercus species (denoted Quercus small dataset) (Fig 2). Tree topologies

Fig 1. Quercus large dataset Bayesian phylogram based on 158 rbcL sequences. Numbers above

branches correspond to Bayesian posterior probabilities. The figure was edited using FigTree Version 1.4.0

[77].

https://doi.org/10.1371/journal.pone.0183970.g001
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using rbcL were congruent with those based on the use of multiple genes, with both leading to

similar lists of amino acid sites detected to have evolved under positive selection. Finally, we

constructed the phylogeny for all 174 species containing the Fagaceae and Nothofagaceae spe-

cies (denoted Fagales henceforward) (Fig 3).

Nucleotide sequences were translated into amino acid sequences with MEGA 5 software

[78] and aligned online using MAFFT [79]. The optimal DNA substitution model was

Fig 2. Quercus small dataset Bayesian phylogeny based on 45 sequences of rbcL, 43 matK and 42

microsatellites. Numbers above branches correspond to Bayesian posterior probabilities. The figure was

edited using FigTree Version 1.4.0 [77].

https://doi.org/10.1371/journal.pone.0183970.g002
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determined by Modeltest v.3.7 package [80, 81] by comparing available models using Bayesian

information criterion (BIC). BI was performed in MrBayes version 3.2 [82] allowing different

models for each region (rbcL, matK and SSRs). Markov Chain Monte Carlo (MCMC) used

two independent runs of 1 × 106 generations. Trees for Quercus small and Fagales datasets

were sampled every 300 generations. For the Quercus large dataset the MCMC used indepen-

dent runs of 5 × 106 generations and trees were sampled every 100 generations. The first 25%

Fig 3. Fagales Bayesian phylogram based on 174 rbcL sequences. Numbers above branches

correspond to Bayesian posterior probabilities. The figure was edited using FigTree Version 1.4.0 [77].

https://doi.org/10.1371/journal.pone.0183970.g003
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of the runs were discarded as burn-in. The trees sampled before reaching a stable posterior

probability (PP) were excluded from the consensus. A majority rule consensus of the remain-

ing trees from the two runs was edited in FigTree v 1.4.0 [77] and used as BI tree.

Maximum likelihood tests for positive selection

Six different codon based models were applied using the codeml program of the PAML pack-

age version 4.7 to test for the presence of positive selection [83]. These models were compared

for goodness-of-fit to the data and phylogenies using the Likelhood Ratio Test (LRT) and the

best model was used to estimate the nonsynonymous-to-synonymous rates ratio (ω = dN/dS).

This ratio represents the selective pressures acting on the protein-coding gene with values of

ω = 1, ω< 1, and positive ω> 1, being indicative of neutral evolution, purifying selection and

positive selection, respectively. BI trees were used as the reference topologies for the PAML

analyses (Figs 1–3).

Site models allow the ω ratio to vary among codons in the protein [84, 85]. Model M1a

assumes the same selection pressures on all branches of the phylogenetic tree. In this model,

codons can either evolve neutrally or under purifying selection, and thus the estimated values

of ω< 1 and/or ω = 1. Model M2a allows for an extra category of codon site compared to M1a

which can evolve under positive selection (ω> 1). Model M8a assumes a discrete beta distri-

bution for ω, which is constrained between 0 and 1 including a class with ω = 1. Model M8

allows the same distribution as M8a with an extra class of codons under positive selection with

ω> 1.

Branch-site models allow ω to vary both among sites in the protein and across branches on

the tree with the aim to detect positive selection affecting a few sites along particular branches

(known as foreground branches). The branch-site A model was applied for branches leading

to species with high or low leaf density; deciduous, evergreen or semi-evergreen species and

species living in climates 1, 2, 3, 4, 5 and 6. When the number of species inhabiting a particular

climate represented less than 15% of the total species analysed, then this climate was discarded

for the branch site test. Model A1 allows 0< ω< 1 and ω = 1 for all branches and also two

additional classes of codons with fixed ω = 1 along pre-specified foreground branches while

restricted as 0< ω< 1 and ω = 1 on background branches. The alternative model A allows 0

< ω< 1 and ω = 1 for all branches and also two alternative classes of codons under positive

selection with ω> 1 along pre-specified foreground branches while restricted to values of 0<

ω< 1 and ω = 1 on background branches.

We performed three LRTs to compare the nested site models M1a-M2a, M8-M8a and

branch-site models A-A1. The LRTs values are calculated as twice the difference in the log-

likelihood values of the models being compared, with the degrees of freedom being the differ-

ence in the number of parameters estimated in each of the models. LRT value can be approxi-

mated to a chi-square distribution. For the comparisons between M1a-M2a, M8-M8a and

A-A1 the df was 2, 1 and 0.5, respectively.

Coevolution analyses

CAPS software [86] was used to test for dependencies among amino acids on the RuBisCO

structure. We used the Bayesian trees of 158 Quercus large and 174 Fagales as topology refer-

ences for the analyses. CAPS compares the correlated variance of the evolutionary rates at two

sites. This variance is corrected by the amount of divergence between the sequences compared

using either the synonymous nucleotide substitutions or, alternatively, amino acid replace-

ments as a relative measures of time. For each protein alignment, the corresponding BLOSUM

matrix was applied depending on the average sequence identity. The significance of the results

Molecular evolution of RuBisCO in Quercus (Fagaceae)
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was evaluated by randomization of pairs of amino acid sites in the alignment, calculation of

their correlation values, and comparison of the real values with the distribution of 10,000 ran-

domly sampled values. An alpha value of 0.01 was applied to minimize the number of false

positives. The level of substitutions per synonymous site weighted the correlated variability

among amino acid sites in order to normalize parameters by the time of sequence divergence.

The method detects phylogenetic-independent coevolution. We also conducted an analysis of

the statistical support for each of the coevolving amino acid pair using a non-parametric boot-

strap analysis. Briefly, for each pair exhibiting significant coevolution signatures we shuffled

the sequences across the tree and we then re-ran CAPS on the new resulting alignment. We

then identified coevolving pairs of amino acid sites and checked for the presence of the pair

identified in the original non-random alignment. We repeated this procedure 1000 times and

for each pairs of coevolving sites determined its frequency as the number of times it is detected

in the 1000 replicates divided by 1000. A pair of coevolving sites was considered to be signifi-

cantly represented in the bootstrap procedure when its frequency was equal or larger than 0.8.

Decision tree model

Decision tree (DT) model analysis (“rpart” package in R v3.1.1) [87] was used to relate the pro-

portion of amino acids present in all variable positions of the L-subunit of RuBisCO to spe-

cies-specific traits (geographic area, climate, leaf habit and density), denoted as external
variables.

For each variable position, the program builds a DT as follows. First, a question is found

based on the analysis of all three external variables to split the species. Then, based on that

question, the species are separated into two groups, in which the variability of that site is as

low as possible. The analysis is repeated for each subgroup using all three external variables.

The process continues until the lowest entropic error (xerror) for the entire DT is obtained

[88]. The quality of the DT is categorized by its xerror as a function of the proportion of cor-

rect predictions and the complexity of the tree. The lower the xerror, the higher the relation-

ship between the external variable and the variable site. Only DTs with xerror < 1 were

selected. The program also calculates the importance of each external variable within the pre-

dictive model.

An advantage of DTs is that no statistical assumptions (about the independence, the distri-

bution, the variance, etc.) are needed. The main limitation of DTs is to identify the optimal

tree under certain criteria, so algorithms are employed to give an approximate solution.

Results

The rbcL variability

We obtained complete sequences of the rbcL gene (1428 nucleotides) for 158 Quercus species,

12 other Fagaceae species (6 Fagus, 3 Castanea, 1 Castanopsis, 2 Lithocarpus) and 4 Nothofaga-

ceae species (4 Nothofagus). Within the Fagales dataset (Fagaceae and Nothofagaceae, all 174

species), 19 variable amino acid sites were observed, resulting in 30 haplotypes (i.e. group of

species with identical L-subunit sequence) (S4 Table). Within Quercus (158 species), 9 variable

sites defined the L-subunit and species were grouped into 21 haplotypes. In the two datasets,

most of the species belonged to haplotype 1.

Complete sequences of the chloroplast matK gene and nuclear SSRs were obtained for 43

and 42 species, respectively (Quercus small dataset). The phylogenetic tree constructed for the

Quercus small dataset with rbcL, matK and SSRs is well resolved with posterior probabilities >

50% (Fig 2). The tree topology was similar to that of Manos et al. (1999) [89] based on com-

bined chloroplast DNA and nuclear internal transcribed spacers (ITS).
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Positive selection in Quercus rbcL

LRTs for positive selection (Table 1) indicated that the free-ratio model, that allows estimating

ω for each of the branches of the tree, was significantly better than the models that do not

allow for differences in ω values among tree branches (p-value = 0.0001). Models M2a and M8

both pointed to positive selection on rbcL in Quercus (small and large datasets) and Fagales.

The three datasets exhibited positive selection at the amino acid sites 95, 219 and 328

(Table 1). In Quercus, asparagine (Asp) and serine (Ser) occurred at site 95, however threonine

was found (Thr) in Nothofagus antarctica and N. procera (S4 Table). In the three groups, valine

(Val) and leucine (Leu) occurred at site 219, and alanine (Ala) and Ser were found at position

328. In both the Quercus small and Fagales datasets, site 262 (Val or Ala) was positively

selected. Sites 251 and 475 appeared as positively selected only in the Quercus large dataset. Iso-

leucine (Ile) and methionine (Met) occurred at residue 251, and Leu and Val occurred at resi-

due 475. Site 145 in Fagus, Lithocarpus and Nothofagus was either a Val or Ala, although all

Quercus species, Castanopsis carlesi, Castanea pumila and Lithocarpus densiflorus shared Ser.

In the Fagales dataset, LRT (Table 2) indicated that the branch-site model A (ω2 = esti-

mated, in branches leading to deciduous or evergreen species or belonging to climate 5, see S1

and S2 Tables) was a significantly better fit to the data than the null model A1 (ω2 = 1, fixed)

(p-value = 0.0001). However, no positively-selected sites were identified under the branch-site

model A in either the Quercus small or large datasets. A total of five sites (95, 145, 251, 262 and

328) appeared as positively selected in Fagales, each exhibiting a posterior Bayesian probability

greater than 0.90 (Table 2). In branches leading to evergreen species, Asp95Ser replacement

was found at least two times (Q. germana, C. carlesii) (Table 3). In branches leading to decid-

uous species, i) Ile251Met replacement was found at least six times (Q. aliena, Q. fabri, Q. grif-
fithii, Q. muehlenbergii, Q. serrrata var. brevipetiolata and Q. wutaishanica); ii) Ala262Val

replacement occurred on one branch leading to C. sativa; iii) Ala328Ser replacement occurred

in branches leading to Q. eugeniifolia and Q. seemani, although Ser328Ala replacement

occurred instead in branches leading to N. procera and N. antarctica. In branches leading to

species in climate 5, i) Ser145Ala replacement took place in at least six times (F. crenata, F.

japonica, F. lucida, F. sylvatica, N. procera, and L. hancei), while Ser145Val replacement

occurred at least three times in branches leading to N. menziesii, N. moorei and N. antarctica,

ii) Ala262Val replacement occurred in the branch leading to C. sativa; iii) Ala328Ser

Table 1. RuBisCO L-subunit sites subject to positive selection.

Dataset Na Site models M2a vs. M1a

test

Site model M8 vs. M8a

testM0 M2a M8

ωb p2
c ω2

d Selected sitese p-value p1
c ωd Selected sitese p-value

Quercus

small

47 0.17 0.011 14.71 95**, 219**, 262*,

328**
0.000 0.011 14.71 95**, 219**, 262**, 328** 0.000

Quercus

large

158 0.18 0.013 13.77 95**, 219**, 328** 0.000 0.017 11.32 95**, 219**, 251*, 328**,

475*
0.000

Fagales 174 0.16 0.009 17.05 95**, 219**, 262**,

328**
0.000 0.009 17.54 95**, 145*, 219**, 262**,

328**
0.000

Likelihood ratio tests (LRTs) were calculated between nested models of codon evolution M1a-M2a and M8-M8a.
a Number of species.
b dN/dS ratio averaged across all branches and codons.
c Proportion of codons in a class under positive selection.
d dN/dS ratio in a class under positive selection.
e Sites marked with * and ** are under positive selection with posterior probability higher than 0.95 and 0.99, respectively.

https://doi.org/10.1371/journal.pone.0183970.t001
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replacement was found in branches leading to Q. costaricensis, while Ser328Ala replacement

occurred in branches leading to C. sativa, C. mollissima. N. procera, N. menziesii, N. moorei
and N. antarctica.

Analysis of dependent evolution among amino acid sites in rbcL

Analysis of coevolution in rbcL identified 29 pairs of coevolving amino acids in Fagales dataset

with a total of 14 non-redundant amino acids involved (Fig 4 and S5 Table). The largest group

of coevolution was composed of sites with only one interaction, and included residues 95, 143,

225, 449, 472 and 475. The coevolving pairs with the highest correlations (1.0) (as a measure of

coevolution) were 30–449, 270–340, 270–353, 270–470, 340–353, 340–470, 353–470 and 472–

475. In the Quercus large dataset, no amino acid were detected as coevolving.

Table 2. Results of branch site model A in Fagales dataset (174 species).

Parametersa Nb Branch site model MA vs. MA1 test

MA

p2
c ω2

d Selected sitese p-value

High leaf density (>900 kg m−3) 48 0.002 94.3 328** 1

Low leaf density (<600 kg m−3) 67 0.000 999.0 - 1

Evergreen 75 0.00023 999.0 95*** 262*** 0.000

Semi-evergreen 17 0.000 4.47 - 1

Deciduous 82 0.005 39.7 251**, 262***, 328*** 0.000

Climate 1 15 0.028 999.0 - 0.000

Climate 3 41 0.000 999.0 - 1

Climate 4 35 0.000 999.0 262** 1

Climate 5 69 0.004 22.03 145*, 262***, 328*** 0.000

Likelihood ratio tests (LRTs) were performed to compare the null model A1 (that assumes the same selective pressure along all branches of a phylogeny)

with the nested model A (that aims to detect positive selection along particular lineages, forward branches).
a According to information in S1 Table.
b Number of species labelled as forward branches.
c Proportion of codons in a class under positive selection.
d dN/dS ratio in a class under positive selection.
e Sites marked with *, ** and *** are under positive selection with posterior probability higher than 0.90, 0.95 and 0.99, respectively.

https://doi.org/10.1371/journal.pone.0183970.t002

Table 3. RuBisCO L-subunit amino acid replacements in Fagales (174 species) identified under positive selection by the Bayes Empirical Bayes

(BEB) analysis implemented in the PAML package [83, 90] along branches leading to species with particular leaf or habitat trait.

Species Amino acid changes Location of residue Interactionsb

Branches leading to evergreen species

95 Asn! Ser Loop between βC-βD strand RuBisCO activase

Branches leading to deciduous species

251 Ile!Met Helix α3

262 Ala! Val Loop 3 S-subunit

328 Ala! Ser/ Ser! Ala Loop 6 Active site

Branches leading to species inhabiting climate 5

145 Ser! Ala/Val Helix αD Hidrophobic core between N-terminal and C-terminal domains

262 Ala! Val Loop 3 S-subunit

328 Ala! Ser/ Ser! Ala Loop 6 Active site

https://doi.org/10.1371/journal.pone.0183970.t003
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Decision tree model

In the Quercus large dataset (158 species), the DT model pointed to a link between the exter-

nal variables (geographic distribution, climate and leaf habit and density) and the RuBisCO

L-subunit variable sites 95, 219, 262 and 328 (Table 4, Fig 5). The xerrors calculated for each

variable site were 0.89, 0.39, 0.44 and 0.59, respectively. According to the xerror, the sites

that were best explained by the external variables were 219 and 262 followed by 328 and 95.

Fig 4. Coevolving sites in the RuBisCO L-subunit of Fagales dataset. Location of amino acids implicated in co-evolutionary dependencies.

https://doi.org/10.1371/journal.pone.0183970.g004

Table 4. Variable sites resolved with the DT model for the Quercus large dataset (158 species).

Variable site xerror Relative importance of external variables

Geographic area Climate Leaf habit Leaf density

95 0.89 25 20 35 20

219 0.39 66 26 n.a. 8

262 0.44 41 14 27 18

328 0.59 28 32 27 13

The xerror corresponding to the best DT found for each variable site, and relative importance (%) of the external variables (geographic area, climate and

leaf habit and density) calculated for each resolved sites are shown. The lower the xerror, the higher the relationship between the external variables and the

variable site. The external variable with the higher relative importance is the most important external variable explaining the variability in the site. n.a.

denotes not selected external variable.

https://doi.org/10.1371/journal.pone.0183970.t004
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The leaf habit (evergreen, semi-evergreen and deciduous) was the external variable that best

explained variability at site 95, followed by the geographic area, climate and leaf density

(Table 4). The most important variable for sites 219 and 262 was geographic area, followed

by climate and leaf density for site 219 and leaf habit, leaf density and climate for site 262.

Site 328 was best explained by climate (2 or 5), followed by geographic area, leaf habit, and

density (Table 4, Fig 5).

Fig 5. Decision trees (DT) resolved for each RuBisCO L-subunit variable site in Quercus large dataset

(158 species) (see S1 Table for details on the external variables: Geographic distribution, climate and

leaf habit and density). Numbers above each tree correspond to the RuBisCO L-subunit variable site

according to the spinach sequence (AJ400848.1). First level presents the proportion of amino acids in each

variable site (brackets). The external variable that allows the best separation of species is shown over the line.

The second level presents the distribution of amino acids (in brackets) after the first split. Subsequent

divisions are performed until the lowest xerror for the entire DT is obtained (symbolized as squares). Taking

as an example the RuBisCO L-subunit variable site 95, the first level shows the separation of the 158 species

between those that present N (121) and those that present S (37). Over the line, leaf habit is indicated as the

external variable that gives the best split among the four external variables, with evergreen and semi-

evergreen species having a proportion of N/S of 79/8. On the other hand, deciduous species present a

proportion of N/S of 42/29. The latter group is further split using geographic area as the best external variable

into a group of species from North and Central America having a N/S proportion of 29/9, and a group of

species from Eurasia and Asia having a proportion of 13/20. The relative importance of each external variable

is shown in Table 4.

https://doi.org/10.1371/journal.pone.0183970.g005
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Discussion

Both phylogenetic analyses by maximum likelihood and decision tree

analyses highlighted the same amino acid substitutions

Methodologically different approaches have been used to study molecular adaptation of

RuBisCO to particular ecological conditions in oak trees (Quercus). Phylogenetic analysis by

maximum likelihood (PAML) [90] is a standard method to identify positive selection at the

molecular level. In the present study, six RuBisCO L-subunit sites (95, 219, 251, 262, 328 and

475) were identified by models M2a and M8 to have evolved under positive selection in Quer-
cus large and small datasets (Table 1), all of which were previously reported in other groups of

plants [41, 42, 43, 44]. For the same Quercus datasets, we compared the results of another

method, the DT model. DT linked RuBisCO L-subunit sites 95, 219, 262 and 328 to distribu-

tion, climate, leaf habit and density (Table 4). All four variable sites resolved by the DT model

were positively selected according to maximum likelihood analyses (Tables 1 and 4). The ana-

lytically simple DT method combined with PAML provided evidence of a link between amino

acids replacements in RuBisCO and specific phenotypes [84, 85]. The combination of both

methods constitutes a powerful tool to identify causal links between genetic variants and adap-

tation of the L-subunit of RuBisCO.

According to the DT model analysis, replacement at site 95 was linked to the leaf habit as

the most important external variable (Table 4). Since site 95 evolved under positive selection

(Table 1), and evergreen and deciduous species typically display different mesophyll conduc-

tance (gm) influencing the CO2 concentration at the site of carboxylation [63], this result pro-

vides support to the idea that CO2 availability shapes RuBisCO evolution [14, 91].

The six RuBisCO sites under positive selection in Quercus large and small datasets (Table 1)

were located in functionally important subunit interfaces within the RuBisCO complex (95,

219, 251, 262, 328 and 475). Site 95 was hypothesized to be involved in interactions between

RuBisCO and RuBisCO activase [92, 93]. Sites 219 and 262 were reported to be involved in

interactions between large and small subunits [94]. Site 262 is located in loop 3 in a hydropho-

bic core in the C-terminal α-β barrel domain and could influence holoenzyme thermal stability

and catalysis [95]. Site 251 seems to be involved in dimer-dimer interactions within the large

subunits [96] and sites 328 and 475 are located close to the active site and in the C-terminus,

respectively [95, 97].

Evidence for CO2 as a major factor driving RuBisCO evolution in

Fagales

In Fagales, species with evergreen leaves had RuBisCO residues 95 and 262 under positive

selection, species with deciduous leaves had residues 251, 262 and 328 under positive selection,

and species inhabiting climate number 5 had residues 145, 262 and 328 under positive selec-

tion (Table 2). In species with evergreen leaves, amino acid replacements in position 95

(Table 3) may be linked to an increased affinity of RuBisCO for CO2 (i.e., low values of the

RuBisCO Michaelis-Menten constant, Kc). The work by Galmés et al. [18] linked the Asp95Ser

replacement to high affinity for CO2 (low Kc). The dataset of evergreen Fagales had an average

LMA of 117.5 ± 0.4 g m-2. This high LMA, and specifically high leaf density, could have been

associated with high resistance to CO2 internal diffusion [63, 97]. Moreover, species with high

LMA also tend to present lower values of stomatal conductance [98]. Hence, RuBisCO of ever-

green Fagales probably works at relatively low CO2 partial pressures. Taken together, these

results suggest that amino acid replacements at position 95 in evergreen Fagales may lead to

RuBisCO with increased affinity for CO2. Unfortunately, our attempts to extract active
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RuBisCO in different Fagales failed due to the high content of polyphenols and other second-

ary metabolic compounds. Future efforts will demand testing different extraction buffers to

obtain sufficient active enzyme and determine key RuBisCO kinetic parameters. In species

with deciduous leaves or inhabiting areas lacking a dry season (climate number 5), replace-

ments at site 328 (Table 3) could be related with decreased RuBisCO CO2 affinity (i.e., high

values of Kc). Galmés et al. [15] reported low specificity factor (Sc/o) and high maximum car-

boxylase turnover rate (kcat
c) and Kc in Limonium species having serine at the site 328. Those

kinetic values are associated with an increase in the chloroplast concentration of CO2. Within

Fagales, species with deciduous leaves or belonging to temperate climate (climate number 5)

had average LMA value of 87.6 ± 0.2 and 95.4 ± 0.4 g m-2, respectively. Low LMA and low leaf

density, together with the absence of a dry season, may favour high CO2 concentration in the

stroma of the chloroplast, via indirect effects on leaf conductance to CO2 [98]. RuBisCO in

deciduous species or inhabiting climate number 5 could have adapted towards a higher kcat
c

and lower CO2 affinity (high Kc) and Sc/o, although this could be confirmed with future kinetic

analyses.

In total, twenty-nine residue pairs in Fagales RuBisCO L-subunit were linked through

intramolecular coevolution, representing c.a. 3% of L-subunit residues (14 out of 476) (Fig 4

and S5 Table). Many of the coevolving residues detected in the present study were already

reported as coevolving in previous studies including different land plant lineages [47, 56]. Our

results showed that both positive selection and coevolution affect some sites. For example, site

95 was positively selected within evergreen species (Tables 1 and 2) and appeared as coevolving

with site 309 (S5 Table). By contrast, site 145 was positively selected within species of climate

number 5 (Tables 1 and 2) and appeared as coevolving with seven sites (30, 142, 143, 270, 340,

353, 470) (S5 Table). Three of the coevolving pairs, 30–340, 142–470 and 270–309 coevolve in

terms of their physic-chemical properties, including molecular weight and hydrophobicity (S5

Table). Coevolving sites may be located within structurally and/or functionally important posi-

tions. For example, Kellogg and Juliano (1997) [99] reported the importance of sites 142 and

145 for dimer-dimer association, and sites 225 and 449 could be important for the interaction

between large and small subunits [100]. Knowledge of co-evolution networks operating in

RuBisCO L-subunit of Fagales provides useful information on target substitutions to improve

the catalytic performance of RuBisCO.

Concluding remarks

Based on our research, it is reasonable to postulate that finely tuned biochemical properties of

Quercus RuBisCOs have evolved as a result of environmental pressures. Such evolution is man-

ifested by positively selected amino acid replacements within the large subunits of Quercus
RuBisCO, which are likely related to different physiological and environmental traits. These

changes could have fine-tuned RuBisCO catalytic efficiency and may have facilitated Quercus
adaptive radiation into diverse ecological niches. The DT model and phylogenetic analysis by

maximum likelihood identified the same amino acid replacements associated with ecological

adaptation and positive selection.

Supporting information

S1 Table. Studied species from Fagaceae and Nothofagaceae families from the order

Fagales. The genus, subgenus and section are indicated along with information on the species

distribution, climate, and leaf habit and density. Data on the geographic distribution and leaf

habit were obtained from Govaerts et al. (1998) [64] and publicly available databases [65, 66,

67, 68]. The climate types were obtained by overlapping the species geographical distribution
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and the Köppen-Geiger world map of climate classification [69]. Fifteen different Köppen-Gei-

ger types of climates were grouped into six: 1 = tropical, 2 = arid steppe, 3 = temperate with

dry winter and hot or warm summer, 4 = temperate with dry summer and hot or warm sum-

mer, 5 = temperate or cold without dry season and hot or warm summer, 6 = cold with dry

summer and hot or warm summer. The species leaf density was calculated from leaf thickness

and leaf mass area (LMA) measurements. The three columns on the right correspond with [1]

classification.

(PDF)

S2 Table. Köppen-Geiger climate types assigned to each of the 174 species (S1 Table) based

on the geographic area. To simplify the analysis, 15 different Köppen-Geiger types of climates

were grouped into six: 1) tropical (including climates Af, Am and Aw according to Köppen-

Geiger classification); 2) arid steppe (Bsh, Bsk); 3) temperate with dry winter and hot or warm

summer (Cwa, Cwb); 4) temperate with dry summer and hot or warm summer (Csa, Csb); 5)

temperate or cold without dry season and hot or warm summer (Cfa, Cfb, Dfa, Dfb), and 6)

cold with dry summer and hot or warm summer (Dsa, Dsb).

(PDF)

S3 Table. Fagaceae and Nothofagaceae GenBank accession numbers for rbcL and matk
genes.

(PDF)

S4 Table. RuBisCO L-subunit 19 variable sites identified in 174 Fagales species, grouped in

30 haplotypes (i.e., groups of species with identical L-subunit sequence). Variable sites iden-

tified when Quercus large dataset (158 species) were analyzed separately are marked in grey (9

variable sites and 21 haplotypes). Species marked with an asterisk were used to construct the

Quercus small dataset (45 species) phylogeny based on rbcL, matK and SSRs.

(PDF)

S5 Table. Coevolution pairs within the L-subunit of RuBisCO. Significant correlation

coefficients are shown (p< 0.001). Mean D1 and Mean D2 values correspond to the mean

distance calculated for each coevolving position based on BLOSUM as calculated in the

method of Fares and Travers (2006) [1]. The bootstraps are based on 100 resampling, the

confidence level associated with the pair that coevolves (values greater than 75% are signifi-

cant after a non-parametric resampling over the tree). Atomic distances were calculated

from 3D crystal structure wherever available by measuring the average Euclidean distance

between atoms of two amino acids (Å). Atomic distances are not used here as evidence of

coevolution but rather as additional supporting information in the identification of func-

tional and structural coevolution. A test for variability in hydrophobicity and molecular

weight has been also conducted giving as a result the pair 30–340, 142–470 and 270–309. n.a.

not available.

(PDF)
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