36 research outputs found

    Genetic affinities of an eradicated European Plasmodium falciparum strain

    Get PDF
    Malaria was present in most of Europe until the second half of the 20th century, when it was eradicated through a combination of increased surveillance and mosquito control strategies, together with cross-border and political collaboration. Despite the severe burden of malaria on human populations, it remains contentious how the disease arrived and spread in Europe. Here, we report a partial Plasmodium falciparum nuclear genome derived from a set of antique medical slides stained with the blood of malaria-infected patients from Spain’s Ebro Delta, dating to the 1940s. Our analyses of the genome of this now eradicated European P. falciparum strain confirms stronger phylogeographical affinity to present-day strains in circulation in central south Asia, rather than to those in Africa. This points to a longitudinal, rather than a latitudinal, spread of malaria into Europe. In addition, this genome displays two derived alleles in the pfmrp1 gene that have been associated with drug resistance. Whilst this could represent standing variation in the ancestral P. falciparum population, these mutations may also have arisen due to the selective pressure of quinine treatment, which was an anti-malarial drug already in use by the time the sample we sequenced was mounted on a slide

    Ancient DNA from Hunter-Gatherer and Farmer Groups from Northern Spain Supports a Random Dispersion Model for the Neolithic Expansion into Europe

    Get PDF
    Background/Principal Findings: The phenomenon of Neolithisation refers to the transition of prehistoric populations from a hunter-gatherer to an agro-pastoralist lifestyle. Traditionally, the spread of an agro-pastoralist economy into Europe has been framed within a dichotomy based either on an acculturation phenomenon or on a demic diffusion. However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. In the present study, we have analyzed the mitochondrial DNA diversity in hunter-gatherers and first farmers from Northern Spain, in relation to the debate surrounding the phenomenon of Neolithisation in Europe. Methodology/Significance: Analysis of mitochondrial DNA was carried out on 54 individuals from Upper Paleolithic and Early Neolithic, which were recovered from nine archaeological sites from Northern Spain (Basque Country, Navarre and Cantabria). In addition, to take all necessary precautions to avoid contamination, different authentication criteria were applied in this study, including: DNA quantification, cloning, duplication (51 % of the samples) and replication of the results (43 % of the samples) by two independent laboratories. Statistical and multivariate analyses of the mitochondrial variability suggest that the genetic influence of Neolithisation did not spread uniformly throughout Europe, producing heterogeneous genetic consequences in different geographical regions, rejecting the traditional models that explain the Neolithisation in Europe

    North African Influences and Potential Bias in Case-Control Association Studies in the Spanish Population

    Get PDF
    BACKGROUND: Despite the limited genetic heterogeneity of Spanish populations, substantial evidences support that historical African influences have not affected them uniformly. Accounting for such population differences might be essential to reduce spurious results in association studies of genetic factors with disease. Using ancestry informative markers (AIMs), we aimed to measure the African influences in Spanish populations and to explore whether these might introduce statistical bias in population-based association studies. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped 93 AIMs in Spanish (from the Canary Islands and the Iberian Peninsula) and Northwest Africans, and conducted population and individual-based clustering analyses along with reference data from the HapMap, HGDP-CEPH, and other sources. We found significant differences for the Northwest African influence among Spanish populations from as low as ≈ 5% in Spanish from the Iberian Peninsula to as much as ≈ 17% in Canary Islanders, whereas the sub-Saharan African influence was negligible. Strikingly, the Northwest African ancestry showed a wide inter-individual variation in Canary Islanders ranging from 0% to 96%, reflecting the violent way the Islands were conquered and colonized by the Spanish in the XV century. As a consequence, a comparison of allele frequencies between Spanish samples from the Iberian Peninsula and the Canary Islands evidenced an excess of markers with significant differences. However, the inflation of p-values for the differences was adequately controlled by correcting for genetic ancestry estimates derived from a reduced number of AIMs. CONCLUSIONS/SIGNIFICANCE: Although the African influences estimated might be biased due to marker ascertainment, these results confirm that Northwest African genetic footprints are recognizable nowadays in the Spanish populations, particularly in Canary Islanders, and that the uneven African influences existing in these populations might increase the risk for false positives in association studies. Adjusting for population stratification assessed with a few dozen AIMs would be sufficient to control this effect

    Reconstruction of major maternal and paternal lineages of the Cape Muslim population

    Get PDF
    The earliest Cape Muslims were brought to the Cape (Cape Town - South Africa) from Africa and Asia from 1652 to 1834. They were part of an involuntary migration of slaves, political prisoners and convicts, and they contributed to the ethnic diversity of the present Cape Muslim population of South Africa. The history of the Cape Muslims has been well documented and researched however no in-depth genetic studies have been undertaken. The aim of the present study was to determine the respective African, Asian and European contributions to the mtDNA (maternal) and Y-chromosomal (paternal) gene pool of the Cape Muslim population, by analyzing DNA samples of 100 unrelated Muslim males born in the Cape Metropolitan area. A panel of six mtDNA and eight Y-chromosome SNP markers were screened using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Overall admixture estimates for the maternal line indicated Asian (0.4168) and African mtDNA (0.4005) as the main contributors. The admixture estimates for the paternal line, however, showed a predominance of the Asian contribution (0.7852). The findings are in accordance with historical data on the origins of the early Cape Muslims.Web of Scienc

    Aboriginal Australian mitochondrial genome variation - An increased understanding of population antiquity and diversity

    Get PDF
    Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ∼55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers. © The Author(s) 2017

    Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes

    Get PDF
    Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India

    Ancient proteins provide evidence of dairy consumption in eastern Africa

    Get PDF
    Consuming the milk of other species is a unique adaptation of Homo sapiens, with implications for health, birth spacing and evolution. Key questions nonetheless remain regarding the origins of dairying and its relationship to the genetically-determined ability to drink milk into adulthood through lactase persistence (LP). As a major centre of LP diversity, Africa is of significant interest to the evolution of dairying. Here we report proteomic evidence for milk consumption in ancient Africa. Using liquid chromatography tandem mass spectrometry (LC-MS/MS) we identify dairy proteins in human dental calculus from northeastern Africa, directly demonstrating milk consumption at least six millennia ago. Our findings indicate that pastoralist groups were drinking milk as soon as herding spread into eastern Africa, at a time when the genetic adaptation for milk digestion was absent or rare. Our study links LP status in specific ancient individuals with direct evidence for their consumption of dairy products

    El ADN mitocondrial de los cazadores-recolectores de la región cantábrica: nueva evidencia de la cueva de El Mirón (Ramales de la Victoria, Cantabria, España)

    No full text
    RESUMEN: Se ha analizado la variabilidad del ADN mitocondrial de los restos humanos recuperados de la cueva de El Mirón (Ramales de la Victoria, Cantabria). Aunque se trata de una muestra pequeña, tiene gran importancia para ampliar nuestro conocimiento sobre los grupos de cazadores-recolectores de la región cantábrica. El linaje mitocondrial obtenido en El Mirón, corresponde al rCRS perteneciente al haplogrupo H. Hasta el momento, este linaje mitocondrial solo se ha detectado en otro cazador-recolector procedente de la cueva de la Pasiega, también en Cantabria; sin embargo sí se ha encontrado en los agropastoralistas de la franja cantábrica y de otras regiones de Europa, lo que lo que nos lleva a proponer que la diversidad del haplogrupo H aumentó a partir del Neolítico.ABSTRACT: We have analyzed the mitochondrial DNA variability of human remains recovered from the cave of El Mirón (Ramales de la Victoria, Cantabria). Although this is a small sample, is important to helping to increase our knowledge about hunter-gatherer groups from the Cantabrian region. The mitochondrial lineage of El Mirón, corresponds to rCRS belonging to haplogroup H. So far, only this mitochondrial lineage has been detected in other hunter-gatherer from cave of La Pasiega, also in Cantabria; however, this lineage has been found in the agro-pastoralist groups from Cantabrian Fringe and other regions of Europe, suggesting an increase in haplogroup H diversity beginning in Neolithic times.Este trabajo ha sido realizado gracias a la financiación recibida del Ministerio de Ciencia e Innovación (CGL-2011-29057), Grupos de Investigación del Sistema Universitario Vasco del Gobierno Vasco (IT542-10) y Unidades de Formación e Investigación de la Universidad del País Vasco (UPV/EHU) (UFI11/09). La datación del diente de El Mirón ha sido financiada por la Stone Age Research Fund (Jean y Ray Auel, donantes principales)
    corecore