87 research outputs found

    Dissolved organic carbon in modeling oceanic new production

    No full text
    The flux of organic carbon associated with new production has been modeled by advection of dissolved organic carbon in addition to falling particulate organic carbon, in a carbon cycle model that is based on an oceanic general circulation model. Model predictions of chemical species involved in the carbon cycle are compared with observations. Relative to a model in which new production is carried only by falling particulate organic carbon, there is significantly better agreement between predicted and observed oceanic phosphate and oxygen concentrations if a large part of the new production flux is carried by dissolved organic carbon. copyright 1991 by the American Geophysical Union

    How does ocean biology affect atmospheric pCO2? Theory and models

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research

    The salinity normalization of marine inorganic carbon chemistry data

    Get PDF
    Normalization to a constant salinity (S) is widely used for the adjustment of marine inorganic carbon chemistry data such as total alkalinity (AT) and total dissolved inorganic carbon (CT). This procedure traces back to the earliest studies in marine chemistry, but ignores the influence of riverine input of alkalinity and of dissolution of biogenic carbonates in the ocean. We tested different adjustment possibilities for AT and conclude that in most parts of the surface ocean the normalization concept does not reflect relationships which represent reality. In this paper, we propose a salinity adjustment based on a constant and region-specific term for S = 0, which expresses river run off, upwelling from below the lysocline, calcification, and lateral sea surface water exchange. One application of the normalization concept is its extension to AT and also CT predictions and implementation in models. We give a brief discussion on the usage of such extensions

    Interannual variations in continental-scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3025, doi:10.1029/2007GB003082.Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2 Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to 2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated regional totals and the individual regional estimates are accompanied by a model uncertainty and model spread. We find that interannual variability is larger on the land than the ocean, with total land exchange correlated to the timing of both El Niño/Southern Oscillation (ENSO) as well as the eruption of Mt. Pinatubo. The post-Pinatubo negative flux anomaly is evident across much of the tropical and northern extratropical land regions. In the oceans, the tropics tend to exhibit the greatest level of interannual variability, while on land, the interannual variability is slightly greater in the tropics and northern extratropics. The interannual variation in carbon flux estimates aggregated by land and ocean across latitudinal bands remains consistent across eight different CO2 observing networks. The interannual variation in carbon flux estimates for individual flux regions remains mostly consistent across the individual observing networks. At all scales, there is considerable consistency in the interannual variations among the 13 participating model groups. Finally, consistent with other studies using different techniques, we find a considerable positive net carbon flux anomaly in the tropical land during the period of the large ENSO in 1997/1998 which is evident in the Tropical Asia, Temperate Asia, Northern African, and Southern Africa land regions. Negative anomalies are estimated for the East Pacific Ocean and South Pacific Ocean regions. Earlier ENSO events of the 1980s are most evident in southern land positive flux anomalies

    Comment on Qian et al. 2008: La Niña and El Niño composites of atmospheric CO2 change

    Get PDF
    It is well known that interannual extremes in the rate of change of atmospheric CO2 are strongly influenced by the occurrence of El Niño-Southern Oscillation (ENSO) events. Qian et al. presented ENSO composites of atmospheric CO2 changes. We show that their composites do not reflect the atmospheric changes that are most relevant to understanding the role of ENSO on atmospheric CO2 variability. We present here composites of atmospheric CO2 change that differ markedly from those of Qian et al., and reveal previously unreported asymmetries between the effects on the global carbon system of El Niño and La Niña events. The calendar-year timing differs; La Niña changes in atmospheric CO2 typically occur primarily over September–May, while El Niño changes occur primarily over December–August. And the net concentration change is quite different; La Niña changes are about half the size of El Niño changes. These results illustrate new aspects of the ENSO/global carbon budget interaction and provide useful global-scale benchmarks for the evaluation of Earth System Model studies of the carbon system

    Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G01010, doi:10.1029/2007JG000408.Seasonal and interannual variability in atmospheric carbon dioxide (CO2) concentrations was simulated using fluxes from fossil fuel, ocean and terrestrial biogeochemical models, and a tracer transport model with time-varying winds. The atmospheric CO2 variability resulting from these surface fluxes was compared to observations from 89 GLOBALVIEW monitoring stations. At northern hemisphere stations, the model simulations captured most of the observed seasonal cycle in atmospheric CO2, with the land tracer accounting for the majority of the signal. The ocean tracer was 3–6 months out of phase with the observed cycle at these stations and had a seasonal amplitude only ∼10% on average of observed. Model and observed interannual CO2 growth anomalies were only moderately well correlated in the northern hemisphere (R ∼ 0.4–0.8), and more poorly correlated in the southern hemisphere (R < 0.6). Land dominated the interannual variability (IAV) in the northern hemisphere, and biomass burning in particular accounted for much of the strong positive CO2 growth anomaly observed during the 1997–1998 El Niño event. The signals in atmospheric CO2 from the terrestrial biosphere extended throughout the southern hemisphere, but oceanic fluxes also exerted a strong influence there, accounting for roughly half of the IAV at many extratropical stations. However, the modeled ocean tracer was generally uncorrelated with observations in either hemisphere from 1979–2004, except during the weak El Niño/post-Pinatubo period of the early 1990s. During that time, model results suggested that the ocean may have accounted for 20–25% of the observed slowdown in the atmospheric CO2 growth rate.We acknowledge the support of NASA grant NNG05GG30G and NSF grant ATM0628472
    • …
    corecore