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atmospheric CO,
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[1] Seasonal and interannual variability in atmospheric carbon dioxide (CO,)
concentrations was simulated using fluxes from fossil fuel, ocean and terrestrial
biogeochemical models, and a tracer transport model with time-varying winds. The
atmospheric CO, variability resulting from these surface fluxes was compared to
observations from 89 GLOBALVIEW monitoring stations. At northern hemisphere
stations, the model simulations captured most of the observed seasonal cycle in
atmospheric CO,, with the land tracer accounting for the majority of the signal. The ocean
tracer was 3—6 months out of phase with the observed cycle at these stations and had

a seasonal amplitude only ~10% on average of observed. Model and observed interannual
CO, growth anomalies were only moderately well correlated in the northern hemisphere
(R ~ 0.4-0.8), and more poorly correlated in the southern hemisphere (R < 0.6).

Land dominated the interannual variability (IAV) in the northern hemisphere, and biomass
burning in particular accounted for much of the strong positive CO, growth anomaly
observed during the 1997—1998 El Nifio event. The signals in atmospheric CO, from the
terrestrial biosphere extended throughout the southern hemisphere, but oceanic fluxes also
exerted a strong influence there, accounting for roughly half of the IAV at many
extratropical stations. However, the modeled ocean tracer was generally uncorrelated
with observations in either hemisphere from 1979-2004, except during the weak El Nifio/
post-Pinatubo period of the early 1990s. During that time, model results suggested that the
ocean may have accounted for 20—25% of the observed slowdown in the atmospheric
CO, growth rate.
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atmospheric measurements beginning in the late 1950s
[Keeling et al., 1989]. Anthropogenic fossil fuel combustion
and cement manufacture drive most of the recent global
atmospheric increase, but natural biogeochemical sources
and sinks of CO, control much of the variability observed in
atmospheric CO, data on seasonal and interannual time-

1. Introduction

[2] The increase in atmospheric CO, from a preindustrial
level of 280 ppm to the 2006 level of over 380 ppm has
been well documented in ice core and firn data and by direct
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scales. The seasonal cycle in atmospheric CO, is attributed
mainly to a seasonal imbalance between terrestrial net
primary production and heterotrophic respiration [Fung et
al., 1983, 1987]. The large interannual variability (IAV)
observed in the atmospheric CO, growth rate is caused by
year to year changes in net uptake of CO, by land and ocean
sinks, which have absorbed more than half on average of the
total anthropogenic input (including CO, released by de-
forestation, discussed below) over the last 50 years. The
fossil fuel and cement input, in contrast, increases more or
less steadily with time and cannot explain the observed IAV
[Prentice et al., 2001].
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[3] Deforestation and biomass burning provide an addi-
tional anthropogenic source of CO, to the atmosphere. The
deforestation source is currently estimated to be approxi-
mately 10—-20% of the fossil and cement flux, although its
magnitude and variability are much less precisely known
[Houghton, 2003]. Furthermore, uptake and long-term stor-
age of carbon in other parts of the terrestrial biosphere, e.g.,
from forest regrowth, tend to compensate for deforestation
such that the terrestrial biosphere on average has been a
small net sink of carbon over recent decades [Prentice et al.,
2001]. Bottom-up estimates based on data extrapolations
and process-based models can distinguish between defores-
tation loss and terrestrial uptake [Dargaville et al., 2002;
Houghton, 2003]. Inverse methods, using atmospheric CO,
and complementary '°C and O,/N, data, provide top-down
constraints on these models and data extrapolations, but can
only resolve the net terrestrial flux [Keeling et al., 1996;
Battle et al., 2000; Bender et al., 2005; Baker et al., 2006].

[4] The ocean carbon sink has been quantified by a variety
of methodologies, including process-based ocean models,
surface data extrapolations, subsurface data inventories and
atmospheric and oceanic inversions. Some methods directly
quantify the geochemical uptake of anthropogenic CO, by
the ocean [Gloor et al., 2003; Quay et al., 2003; Bender et al.,
2005; Matsumoto and Gruber, 2005], while other methods
measure the net global air-sea CO, exchange [Takahashi et
al., 2002; Baker et al., 2006]. These latter estimates must be
corrected by a net outgassing of ~0.6 Pg C/yr from river
export [Sarmiento and Sundquist, 1992] before they can be
compared directly to the former results. Despite these com-
plexities, most estimates of the anthropogenic ocean sink
tend to converge around ~2 + 1 Pg C/yr for the 1990s [Orr et
al., 2001; Prentice et al., 2001; Bender et al., 2005]. In
addition, the methodologies capable of partitioning land and
ocean carbon sinks generally agree that the ocean accounts
for the majority of the overall uptake of anthropogenic CO,
but that most of the TAV in the atmospheric CO, growth rate
is controlled by the net terrestrial term [Keeling et al., 1996;
Lee et al., 1998; Battle et al., 2000; Bousquet et al., 2000;
Le Queré et al., 2003; Baker et al., 2006].

[5s] Although the literature tends to agree on the overall
magnitude of the ocean sink and on its secondary impor-
tance relative to the net land sink in determining IAV in
atmospheric CO,, substantial gaps in understanding remain.
Atmospheric inverse methods based on atmospheric CO,,
13C and 0,/N, suggest that oceanic IAV ranges from about
1 to 3 Pg C/yr [Bender et al., 2005; Baker et al., 2006],
whereas process-based ocean carbon models generally pre-
dict IAV of <1 Pg C/yr [Le Quéré et al., 2000, 2003; Obata
and Kitamura, 2003; McKinley et al., 2004a]. Oceanic
measurements support AV in the equatorial oceans of at
most 0.8 Pg Clyr [Feely et al., 2002], while observations in
extratropical regions are too sparse to determine yearly
changes in CO, uptake.

[6] The seasonal cycle of the ocean CO, flux is also not
fully understood. In general, it is smaller than that of land
due to the natural buffering of CO, by ocean carbonate
chemistry and to the competition between thermal solubility
effects and biological/circulation-driven changes in dis-
solved inorganic carbon (DIC). Analysis of observed sur-
face pCO, suggests that biological and mixing effects
dominate the pCO, seasonal cycle at high latitudes, that
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there is little cycle at the equator, and that thermal effects
dominate in the subtropical gyres [Takahashi et al., 2002].
In the high latitude North Pacific, McKinley et al. [2006]
illustrated that many ocean models have difficulty resolving
the observed pCO, seasonal cycle because the net change in
surface pCO, is a small residual difference between the
large and opposite thermal and DIC-driven terms.

[7] Previous tracer transport model simulations with
carbon fluxes from terrestrial biosphere models have been
reasonably successful in reproducing the observed seasonal
cycle of atmospheric CO,, although the simulations have
tended to underestimate the amplitude of the cycle at
northern hemisphere observing stations [Randerson et al.,
1997; Dargaville et al., 2002]. In some cases, the minimum
in the model seasonal cycle was also too early by one to two
months, possibly due to problems in the terrestrial models’
freeze-thaw dynamics. The IAV in atmospheric CO, due to
terrestrial carbon fluxes has been investigated in these
simulations, with much of the emphasis on the AV in the
amplitude of the seasonal cycle. Dargaville et al. [2002]
also investigated the annual mean IAV in the net land sink
and found a tendency of models to underestimate the
observed IAV by more than 50%. Recent work suggests
that biomass burning, which is closely associated with
El Nifo-induced drought, may account for much of the
IAV in the net terrestrial carbon sink [Langenfelds et al.,
2002; Van der Werf et al., 2004].

[8] Many previous atmospheric transport simulations of
total CO,, including land, ocean and fossil fuel surface
fluxes, have been performed. These include forward simu-
lations that have combined AV in transport with cyclosta-
tionary (i.e., the same climatological seasonal cycle repeated
each year) surface fluxes [Dargaville et al., 2000, 2003] or
IAV in land (but not ocean) surface fluxes with cyclosta-
tionary transport [Dargaville et al., 2002]. Geels et al.
[2004] simulated TAV in both terrestrial CO, fluxes and
atmospheric transport for nearly a decade but focused their
analysis primarily on high frequency, synoptic variability.

[9] In addition to the forward simulations, many inverse
models have been used to elucidate land and ocean surface
CO, flux variability [Gurney et al., 2003, 2004; Rédenbeck
et al., 2003; Baker et al., 2006]. With the exception of
Rédenbeck et al., these inversion studies have used cyclo-
stationary atmospheric transport and large, homogenous
regions as the basis for their ocean flux estimates. McKinley
et al. [2004b] suggest that the use of small regions in
Rédenbeck et al. reduces aggregation error and improves
forward model/inversion agreement for the high latitude
oceans.

[10] Here we present a comparison of observed seasonal
and interannual variability in atmospheric CO, to forward
transport model simulations in which full IAV is included in
both transport and surface fluxes. The latter are obtained
from ocean and terrestrial biogeochemistry models and
fossil fuel databases. Our goals are (1) to assess whether
the current generation of ocean and land models can capture
the observed seasonal and interannual variability and (2)
determine the relative importance of land and ocean fluxes
for seasonal and interannual variability. Neither of these
questions has been fully addressed using the latest gener-
ations of models. We begin in the Methods section with a
description of the atmospheric chemical transport model,
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Table 1. Summary of Tracers Used to Calculate Seasonal and Interannual Variability in Atmospheric CO,

Tracer Period of Analysis for Seasonal Cycle Period of Analysis for IAV

MATCH Tracers
Fossil Fuel 1997-2004 1979-2004
Ocean

WHOI best case 1997-2004 1979-2004

WHOI cyclostationary 1997-2004 1979-2004

Takahashi et al. [2002] 1997-2004 N/A

MIT 1986-1997 1986—-1997
Land

CASA Neutral Biosphere (NB) 1997-2004 N/A

GFED NEP 1997-2004 1997-2004

GFED Uncorrected Biomass Burning (BB) 1997-2004 1997-2004

GFED best-case BB, corrected based on CO inversion 1997-2004 1997-2004
Total CO,

(1) Best case = best ocean + GFED (NEP+best BB) + fossil fuel 1997-2004 1997-2004

(2) Takahashi ocean + GFED (NEP-+best BB) + fossil fuel 1997-2004 1997-2004

(3) best ocean + CASA NB + fossil fuel 1997-2004 N/A

(4) best ocean + GFED (NEP+uncorrected BB) + fossil fuel 1997-2004 1997-2004
GLOBALVIEW Observations

89 Stations (Table 2) 1997-2004 1997-2004

33 Stations (Table 3) N/A 1979-2004

ocean, land and fossil fuel fluxes, as well as the atmospheric
CO, observations and analytical methods used to evaluate
model results. We present and discuss our results in
section 3, which is partitioned into seasonal variability, latitu-
dinal gradients, temporal IAV and spatial IAV. The impact of
IAV in ocean fluxes on atmospheric CO, is emphasized in
section 4, since this topic in particular has not been studied in a
comprehensive fashion in previous studies. Section 4.1 exam-
ines IAV associated with El Nifio cycles, and section 4.2
presents a comparison of IAV in ocean model fluxes to
those inferred by the Transcom 3 inversion. We conclude in
section 5 with a summary of our main findings.

2. Methods

2.1. MATCH Atmospheric Transport Model
and NCEP Meteorology

[11] The atmospheric chemical transport model used here
is the Model of Atmospheric Transport and Chemistry
(MATCH) [Rasch et al., 1997; Mahowald et al., 1997].
The current study uses T62 horizontal resolution (about 1.9°
latitude by longitude) with 28 vertical levels, and includes
transport by large scale advection as well as subgrid scale
mixing by dry and moist convection. MATCH has an
explicit planetary boundary layer formulation and produces
a relatively strong “‘seasonal rectifier” of CO, concentra-
tions, especially when driven with NCEP reanalysis data
[Gurney et al., 2003]. MATCH was run with a time step of
20 minutes using archived 6 hourly winds for the years
1979-2004 from the National Center for Environmental
Prediction (NCEP) reanalyses [Kalnay et al., 1996]. Re-
analysis products provide the best available estimate of the
historical state of the atmosphere, since they combine model
and observations, although they may still contain substantial
regional spatial biases and tend to underestimate high
temporal and spatial wind speed variability. The surface
CO, fluxes described in section 2.2 were interpolated from
their original resolution to the modeled resolution and used
as surface flux boundary conditions in MATCH. Each flux
type was tracked in the model as a separate tracer.

2.2. Surface CO, Fluxes

2.2.1. WHOI Ocean Model

[12] The principal surface ocean CO, fluxes used in this
study were produced by combining an ocean general circu-
lation model with a marine ecosystem model. The ecosystem
model includes a nutrient-phytoplankton-zooplankton-
detritus (NPZD) food web with multi-nutrient limitation
(N, P, Si, Fe) and specific phytoplankton functional groups
[Doney et al., 1996; Moore et al., 2002, 2004]. The
ecosystem model is embedded into an ocean biogeochem-
istry module based on the OCMIP model [Doney et al.,
2004]. The underlying physical circulation model is the
Parallel Ocean Program (POP), which was run on a dis-
placed pole grid with a longitude resolution of 3.6° and a
latitude resolution ranging from 0.6° in the tropics to 2.8° at
midlatitudes. POP was forced with daily averaged NCEP
reanalysis surface winds, atmospheric temperature and
humidity, and satellite data products from 1979-2004
[Doney et al., 1998, 2007], consistent with the MATCH
simulation. The MATCH results presented below are based
on monthly mean ocean fluxes. Two different WHOI ocean
CO, fluxes were tested in MATCH (Table 1): (a) a best-case
run, in which realistic IAV was included in all physical
drivers, including wind, SST, solar radiation, heat flux, and
iron dust deposition, (b) a cyclostationary run using the
climatological average from 1979-2004 of the best-case
run.
2.2.2. Takahashi Surface Ocean CO, Flux Climatology

[13] For comparison to the WHOI ocean model, MATCH
simulations were conducted from 1988—-2004 with the air-
sea CO, flux estimated from the global monthly climatol-
ogy of underway ApCO, measurements [Takahashi et al.,
2002] (http://www.ldeo.columbia.edu). The ApCO, maps
were constructed by projecting 40 years of historical data,
excluding El Nifio years, onto a single virtual year (1995).
Takahashi et al. estimated the surface CO, flux from
ApCO; using 10-m mean wind speeds from 41 years of
NCEP reanalysis and the Wanninkhof[1992] quadratic wind
speed dependence for the sea-air CO, gas transfer coeffi-
cient k. (Note: we used the corrected CO, fluxes down-
loaded from the Columbia website, which used 10 m height
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Table 2. Eighty-Nine GLOBALVIEW Stations With CO, Records Containing >~60% Real Data From 1997 to 2004*
Station Code Latitude Longitude Elevation Rtot Rlnd Rnep Rbb

Alert ALT 82.5 —62.5 210 0.74° 0.72° 0.64°

Amsterdam Island AMS —38.0 77.5 150

Ascension Island ASC -7.9 —14.4 54

Assekrem Algeria ASK 232 54 2728

Azores AZR 38.8 —27.1 30 0.63° 0.67°

Baltic Sea Poland BAL 55.5 16.7 7 0.66" 0.58° 0.61°

Baring Head NZ BHD —41.4 174.9 80

Bermuda West BMW 323 —64.9 30

Bermuda East BME 323 —64.7 30

Barrow Alaska BRW 71.3 —156.6 11 0.64¢

Black Sea Romania BSC 44.2 28.7 3

Carr CO C3K 40.9 —104.8 3000

Carr CO C4K 40.9 —104.8 4000

Carr CO C5K 40.9 —104.8 5000

Carr CO C6K 40.9 —104.8 6000

Carr CO C7K 40.9 —104.8 7000

Carr CO C8K 40.9 —104.8 8000

Cold Bay Alaska CBA 55.2 —162.7 25

Cape Ferguson Aust. CFA —19.3 147.1 2

Cape Grim Tasmania CGO —40.7 144.7 94

Christmas Island CHR 1.7 —157.2 3

Mt. Cimone Italy CMN 442 10.7 2165 0.66°

Cape Ochi-Ichi Japan (¢(0) 432 145.5 100 0.68° 0.59¢

Cape Pt. South Africa CPT —34.4 18.5 230

Cape Rama India CRI 15.1 73.8 60

Crozet Island CRZ —46.5 51.9 120

Easter Island EIC —-29.2 —109.4 50

Estevan Pt B.C. ESP 49.4 —126.6 39

Fraserdale Ontario FRD 49.9 —-81.6 210 0.51° 0.51°

Guam GMI 13.4 144.8 2

Hateruma Isl. Japan HAT 24.1 123.8 47 0.80°

Halley Bay Antarctica HBA —75.7 —25.5 10

Hungary HUN 47.0 16.7 300 0.44¢

Storhofdi Iceland ICE 63.3 —20.2 100

Canary Islands 12O 28.3 —16.5 2360

Jubany Antarctica JBN —62.2 —58.8 15

Key Biscayne FL KEY 25.7 —80.2 3

Kumukahi HA KUM 19.5 —154.8 3

Kazakhstan Sary Tau KZD 44.5 75.6 412

Kazakhstan Plateau KZM 433 77.9 2519

Wisconsin Tower LEF 459 —90.3 500

La Jolla CA LJO 32.9 —117.3 16

Lampedusa Italy LMP 35.5 12.6 85 0.70° 0.69¢ 0.56°

Mawson Antarctica MAA —67.6 62.9 32

Mace Head Ireland MHD 533 -9.9 25 0.44°¢

Sand Island Midway MID 28.2 —177.4 4

Mauna Loa HA MLO 19.5 —155.6 3397

Minamitorishima Japan MNM 243 154.0 8 0.69¢ 0.67°

Macquarie Island MQA —54.5 159.0 12

Niwot Ridge CO NWR 40.1 —105.6 3475

Orleans France 005 47.8 2.5 500

Orleans France 015 47.8 2.5 1500

Orleans France 025 47.8 2.5 2500

Orleans France 035 47.8 2.5 3500

Pallas Finland PAL 68.0 24.1 560 0.77° 0.69° 0.72°

Pacific Ocean NO0O 0.0 —155.0 0

Pacific Ocean NO5 5.0 —151.0 0 0.84°¢

Pacific Ocean N10 10.0 —149.0 0 0.83°¢

Pacific Ocean N15 15.0 —145.0 0 0.77¢ 0.75° 0.83°

Pacific Ocean N20 20.0 —141.0 0 0.75¢

Pacific Ocean N25 25.0 —139.0 0 0.74° 0.79°¢

Pacific Ocean N30 30.0 —135.0 0

Pacific Ocean S05 -5.0 —159.0 0

Pacific Ocean S10 —10.0 —161.0 0

Pacific Ocean S15 —15.0 —171.0 0

Pacific Ocean S20 —20.0 —174.0 0

Pacific Ocean S25 —25.0 —171.0 0

Plateau Rosa Italy PRS 459 7.7 3480

Palmer Antarctica PSA —64.9 —64.0 10

Ragged Pt. Barbados RPB 13.2 —59.4 3

Ryori Japan RYO 39.0 141.8 230 0.62°

Schauinsland Germany SCH 48.0 8.0 1205

Mahe Island Seychelles SEY —4.7 55.2 3
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Table 2. (continued)

Station Code Latitude Longitude Elevation Rtot RlInd Rnep Rbb
Shemya Island AK SHM 52.7 174.1 40 0.74° 0.71° 0.74°
Shetland Isl. Scotland SIS 60.2 —1.2 30 0.59¢
Samoa SMO —14.3 —170.6 42
South Pole SPO —90.0 —24.8 2830
Atlantic Ocean Norway STM 66.0 2.0 7 0.80° 0.67° 0.64¢
Summit Greenland SUM 72.6 —38.5 3238 0.60°
Syowa Antarctica SYO —69.0 39.6 11
Tae-ahn Penin. Korea TAP 36.7 126.1 20
Tierra del Fuego TDF —54.9 —68.5 20
Wendover Utah UTA 39.9 —113.7 1320 0.45°¢
Ulaan Uul Mongolia UUM 44.5 111.1 914
Westerland North Sea WES 55.0 8.0 8 0.60° 0.60° 0.54°
Sede Boker Israel WIS 311 349 400 0.64° 0.65°
Qinghai Province PRC WLG 36.3 100.9 3810 0.61°
Yonagunijima Japan YON 24.5 123.0 30 0.74¢
Zeppelin Norway ZEP 78.9 11.9 474 0.66° 0.67° 0.61°

“The coefficients (R) for total CO,, net GFED land, NEE, and BB tracers yielding statistically significant correlations with observations of TAV are listed.

*Here 1% < p < 5%.
“Here 5% < p < 10%.

wind speeds in the Wanninkhof formula.) Although only one
climatological year of the Takahashi CO, fluxes exists, the
MATCH simulation included some interannual variability in
this flux by including AV in wind speeds. This was done by
scaling the flux by the ratio of the monthly mean of the
square of the NCEP wind speed in a given year by the
climatological monthly mean of the square of the NCEP

wind speed from 1988 to 2004. This scaling approach was
based on the commonly assumed 2nd order dependence on
wind speed [Wanninkhof, 1992] although recent studies
propose wind speed power dependences for & ranging from
below 1 [Krakauer et al., 2006] to 3 [Wanninkhof and
McGillis, 1999].

Table 3. Thirty-Three GLOBALVIEW Stations With CO, Records Containing >~60% Real Data From 1979 to 2004*

Station Code Latitude Longitude Elevation, m Rff Rocn
Alert ALT 82.5 —62.5 210
Amsterdam Island AMS —38.0 77.5 150
Ascension Island ASC -7.9 —14.4 54
Azores AZR 38.8 —27.1 30
Baring Head NZ BHD —41.4 174.9 80
Bermuda West BMW 323 —64.9 30
Bermuda East BME 323 —64.7 30
Barrow Alaska BRW 71.3 ~156.6 11 0.43°
Cold Bay Alaska CBA 552 —162.7 25 0.30°
Cape Grim Tasmania CGO —40.7 144.7 94
Christmas Island CHR 1.7 —157.2 3
Mt. Cimone Italy CMN 442 10.7 2165 0.30°
Guam GMI 13.4 144.8 2
Halley Bay Antarctica HBA —75.7 —25.5 10
Canary Islands 12O 28.3 —16.5 2360
Key Biscayne FL KEY 25.7 —80.2 3
Kumukahi HA KUM 19.5 —154.8 3
Mould Bay Canada MBC 76.3 —119.3 58 0.42°
Sand Island Midway MID 28.2 —-177.4 4
Mauna Loa HA MLO 19.5 —155.6 3397
Niwot Ridge CO NWR 40.1 —105.6 3475
Palmer Antarctica PSA —64.9 —64.0 10
Ragged Pt. Barbados RPB 13.2 —59.4 3
Ryori Japan RYO 39.0 141.8 230
Sable Island Nova Scot. SBL 439 —60.0 5
Schauinsland Germany SCH 48.0 8.0 1205
Mahe Island Seychelles SEY —4.7 552 3
Shemya Island AK SHM 52.7 174.1 40
Samoa SMO —143 —170.6 42 0.36° 0.47°
South Pole SPO -90.0 —24.8 2830
Atlantic Ocean Norway STM 66.0 2.0 7
Syowa Antarctica SYO —69.0 39.6 11
Westerland North Sea WES 55.0 8.0 8 0.29¢

“The coefficients (R) for fossil fuel and oceanic CO, tracers yielding statistically significant correlations with observations of AV are listed.

®Here 1% < p < 5%.
“Here 5% < p < 10%.
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2.2.3. MIT Ocean Carbon Model

[14] For some sensitivity studies, results are shown from
MATCH simulations using CO, fluxes for 1986—1997 from
the MIT ocean carbon model [McKinley et al., 2004a]. In
comparison to the WHOI ocean model, the MIT model uses
a higher resolution general circulation model (0.3° to 1° x
1°) and a simple export production parameterization to
represent carbon biogeochemistry.
2.2.4. Land Biosphere Fluxes

[15] Two versions of the CASA land biosphere model
were used for terrestrial CO, fluxes. The first was a cyclo-
stationary ‘‘neutral biosphere’ (NB) version, run in
MATCH from 1979-2004, in which net ecosystem produc-
tion [NEP; the balance between heterotrophic respiration
(Ry) and net primary production (NPP)] was assumed to be
zero at each grid cell [Randerson et al., 1997]. The NB
fluxes were 3 hourly and thus included both the diurnal and
the seasonal cycle following the approach described by
Olsen and Randerson [2004]. The second was the Global
Fire Emissions Database (GFED v2) version in which
satellite-based estimates of burned area from 1997-2004
[Giglio et al., 2006] were combined with CASA biome-
dependent parameters, including fuel types and fuel density,
to estimate monthly variability in biomass burning emis-
sions at a 1° x 1° spatial resolution [Randerson et al., 2005;
Van der Werf et al., 2006]. The GFED v2 model provides
separate fluxes for NPP, Ry, and biomass burning (BB),
each of which was simulated as a separate tracer in
MATCH. GFED component fluxes vary in magnitude from
month to month and year to year, with the sum of all fluxes
(the sum of NEP and BB) constrained to be approximately
zero over the 8 year (1997-2004) period based on the
model spin up procedure described by Van der Werf et al.
[2006]. An additional best-case BB flux was estimated
using regionally scaled GFED biomass burning emissions,
in which scaling factors for 14 basis regions were derived
by an inverse approach based on zonal-mean anomalies in
MOPITT column CO concentrations during the 2002—-2005
time period (P. Kasibhatla et al., manuscript in preparation,
2008).
2.2.5. Fossil Fuel and Cement Manufacture Emissions

[16] Temporally and spatially resolved maps of fossil fuel
plus cement CO, emissions were constructed by combining
1970, 1980, 1990 and 1995 1° x 1° maps [Andres et al.,
1996; Brenkert, 1998] with annually resolved totals from 10
global regions [Marland et al., 2003]. A mask for each of
the regions was projected onto the 1° x 1° maps and the
annual totals for each region were interpolated both spatially
and temporally between decades. The 1995 spatial distri-
bution was assumed for all years after 1995. Emissions were
assumed to increase linearly over the calendar year with no
attempt to represent seasonality, although recent work
suggests that seasonality in fossil fuel fluxes could influence
the results of atmospheric inversions [Gurney et al., 2005].

2.3. GLOBALVIEW Atmospheric CO, Data

[17] We evaluated the MATCH simulations using ob-
served atmospheric CO, concentration data from GLOBAL-
VIEW-CO, [2006]. GLOBALVIEW is a data product in
which flask and continuous CO, observations at a global
network of monitoring stations are quality controlled and
fitted to give 48 pseudo-weekly synchronous CO, values
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per year. An extrapolation procedure is used to fill gaps in
the observation records [Masarie and Tans, 1995], with
statistics provided on whether real or filled observations are
used. We selected sites at which real observations were
available at least ~60% of the time. This selection criterion
was met at 89 stations across a broad spatial range for
1997-2004 and for 33 stations across 1979-2004 (see
Tables 2 and 3 for a list of the stations used). We also
experimented with a stricter selection criterion of 80% or
better real data, but this generally had little effect on our
overall results (see Taylor Diagrams described below). To
compare model results and observations, the 48 pseudo-
weekly CO, data were averaged into 12 monthly means.
Monthly mean MATCH results were then sampled at the
latitude, longitude and pressure of the 1.9° x 1.9° x 28
level model that corresponded most closely to the coordi-
nates of the GLOBALVIEW station. In the case of coastal
observation sites that are only sampled when winds come
off the sea, we followed the Transcom protocol of sampling
MATCH at the neighboring ocean grid cell displaced toward
the preferential wind direction [Gurney et al., 2000].

2.4. Analysis Methods

2.4.1. Seasonal Cycles

[18] Mean seasonal cycles were calculated by fitting the
1997-2004 monthly means for each model CO, tracer and
GLOBALVIEW time series (see Table 1) to a polynomial +
harmonic function [Thoning et al., 1989].

F(t)=ay + ait + a® + a3t + aysin(2m)
+ ascos(2mt) + agsin(4wt) + aqcos(4mt) (1)

The optimal fit was determined by least squares regression
in a recursive algorithm in which data points falling more
than 2 standard deviations outside the fit were rejected and
the remaining points refit to equation 1 until all points were
within 20 of the fit. The last 4 terms of F(?), i.e., the
harmonic component, were used to identify the mean
seasonal cycle.
2.4.2. Interannual Variability

[19] Atmospheric growth rate anomalies were calculated
for MATCH tracers and GLOBALVIEW observations, as
summarized in Table 1. Interannual variability in the atmo-
spheric growth rate of CO, was calculated by removing the
seasonal cycle from the monthly mean GLOBALVIEW and
model time series with a 12-month running average, and
calculating the slope of the smoothed time series as a central
difference. The absolute slopes were converted to atmo-
spheric growth rate anomalies by either removing the mean
slope (for time series with no obvious trend in the slope) or,
in the case of fossil fuel, by removing an optimal linear fit
determined by recursive least squares regression. The linear
fit removal was necessary for the fossil fuel tracer because
its slope was clearly increasing with time. Removing the
mean or linear fit facilitated the comparison of tracers with
different secular trends. For example, the ocean was a net
sink of CO, and thus the MATCH ocean tracer decreased
over time, while fossil and hence total CO, increased.
2.4.3. Taylor Diagrams

[20] Taylor diagrams are a convenient way to quantify
and evaluate multiple aspects of model performance in a
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single polar coordinate plot [7aylor, 2001]. Taylor diagrams
are used here to evaluate the model’s ability to simulate the
observed seasonal cycle or IAV. Each symbol on the Taylor
diagrams represents a different GLOBALVIEW monitoring
station. A separate diagram is shown for each MATCH
tracer. The angle 0 from the x-axis in the polar plot is the
arccosine of the correlation coefficient R between the model
and observed time series, which reflects the agreement in
shape and phasing of the two time series. A perfect phase
correlation (R = 1) would lie at # = 0. The value on the
radial axis is the ratio of standard deviations: o,04el/Oobs. It
represents the match between the amplitude of the model
and observed seasonal cycle or IAV. If the model amplitude
agrees perfectly with observations, the ratio is 1. If the
model amplitude is too large, the ratio will be >1, etc. The
comparison of MATCH ““total” results and observations can
be viewed directly as an “evaluation” of the model, while
the comparison of component fluxes (e.g., ocean, biomass
burning, fossil fuel) to observations should be viewed rather
as an effort to quantify their contribution to observed
variability, since any given component flux on its own is
not necessarily expected to reproduce observations.

[21] The statistical significance of the o odel/Tops ratios was
assessed using an F-test of the hypothesis that Olodel =
oZps (see Box 8.1 of Sokal and Rohlf [1981]). The
statistical significance of the correlation coefficients
was assessed by testing the hypothesis that true R = 0,
which involves comparing the calculated R values to
critical R values determined from a t-table (see Box
15.3 of Sokal and Rohlf [1981]). Both tests are a function
of significance level and degrees of freedom v (v = N-1
for the F-test and N-2 for the t-table). The seasonal cycle
statistics calculated here are based in all cases on N = 12
data points, i.e., the mean monthly seasonal cycle from
1997-2004. The statistics for interannual variability have
a more variable N due to the autocorrelation, which
varied by station and tracer, that is introduced in part
by the 12-month running mean used to deseasonalize the
model and observed time series. To account for autocor-
relation in each time series, we used an effective N (Nogr=
N/k) to calculate v, where & is the integrated area of the
autocorrelation vs. lag curve centered around 0 lag for
which the autocorrelation coefficient p > 0.1 [Carlin and
Louis, 2000, p. 171]. For land and total CO, calculations,
which were based on monthly 1997-2004 time series
(i.e., N = 96 minus 6 months at the beginning and end
associated with the 12-month running average), typical
values of N were ~6 for BB, ~11 for observed CO,,
and ~14 for NEP. The low values of N for BB reflect
the high autocorrelation in the biomass burning time
series. In all cases, the smaller of the observed and model
Nerr Was used to estimate v.

2.4.4. RMS Variability

[22] Latitude-longitude maps of Root Mean Square
(RMS) variability were used to evaluate the spatial distri-
bution of model variability. Such plots are nonspecific
with respect to the timing of variability. Seasonal RMS
variability was calculated as the RMS of the differences
between model climatological monthly means and the
climatological annual mean. For IAV, the RMS is com-
puted as the RMS of the differences between each month
and the corresponding month from the climatological
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seasonal cycle. RMS calculations were performed separately
for land, ocean, fossil fuel and total (i.e., the sum of land,
ocean and fossil components) CO, tracers. The portional
contribution of each tracer to RMS variability was calculated
by dividing the component RMS by the total RMS. The sum
of all components was often greater than 1 in cases of
cancellation of signals among individual components.

3. Results and Discussion
3.1. Seasonal Cycles

[23] To demonstrate the characteristics of the modeled CO,
concentrations, we focus on 6 GLOBALVIEW stations, and
then discuss the behavior at all 89 stations meeting the 60%
real data criterion from 1997-2004. The MATCH simula-
tions are generally able to capture the seasonal cycle in
the Northern Hemisphere, but have more trouble close to
the equator and in the Southern Hemisphere (Figure 1). The
model results at Mauna Loa (MLO), Lampedusa, Italy
(LMP), and Ocean Station, Norway (STM) confirm the
general understanding that the land biosphere dominates the
seasonality in atmospheric CO, in the northern hemisphere.
In the southern hemisphere, the contribution of other com-
ponent fluxes to the total seasonal cycle is more substantial.
At Samoa in the southern tropics, land and ocean compo-
nents combine to create a double maximum seasonal cycle,
similar to the observed cycle. At Cape Grim (CGO) and
Palmer Station (PSA) in the mid to high latitude Southern
Hemisphere, land and ocean tracers are in phase and of
comparable magnitude. Either component tracer alone
matches reasonably well to the observed seasonal cycle,
but when ocean and land are added together, the amplitude
of the resulting total CO, tracer exceeds that of the observed
cycle by a factor of 2 at PSA and 3 at CGO. According to
the F-test, 0nodel/Oops atios of >1.9 or <0.55 indicate sta-
tistically significant differences between model and obser-
vations at the 5% level. Fossil fuel generally has a small
seasonal cycle and contributes little to the overall seasonal
amplitude in either hemisphere, although its importance
could be underestimated due to the lack of seasonality in
the prescribed fossil surface flux.

[24] The cyclostationary neutral biosphere (NB) land CO,
tracer is similar to the GFED tracer at most stations,
although the two tracers differ at Samoa and Cape Grim,
mainly as a result of the biomass burning component of
GFED. For the ocean carbon tracers, the WHOI best-case
model ocean seasonal cycle is virtually identical to the
cyclostationary run (latter not shown in Figure 1). In
contrast, substantial differences in phasing occur between
the Takahashi and WHOI tracers, especially in the mid to
high latitude Southern Ocean.

[25] To show results from all 89 stations in a compact
fashion, we use Taylor diagrams (introduced in the meth-
odology section). In the Northern Hemisphere, where the
land biosphere dominates the seasonal cycle, the shape and
phasing of model and observations is in excellent agree-
ment, regardless of whether the GFED or NB land tracer is
used (Figure 2). At almost all northern stations, the corre-
lation coefficient R between model and observations is
>0.7, which is statistically significant at the 1% confidence
level. However, the model tends to underestimate the
amplitude of the Northern Hemisphere cycle by an average
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Seasonal cycles of atmospheric CO, at six selected stations determined from mean harmonic

fit to 1997—-2004 time series. Thin black line with triangles is GLOBALVIEW observed cycle. Blue
dashed line is WHOI best-case ocean, cyan dashed line is Takahashi ocean. Black dotted line is GFED
land, green dotted line is neutral biosphere, red dotted line is the best-case biomass burning component of
GFED. Magenta dot-dash line is fossil fuel. Solid heavy black line is best-case total CO, (as defined in
Table 1). (a) Ocean Station, Norway (STM), (b) Lampedusa, Italy (LMP, (c) Mauna Loa, Hawaii (MLO),
(d) Samoa (SMO), (e) Cape Grim, Tasmania (CGO), and (f) Palmer Station, Antarctica (PSA).

of ~20% and up to 50% at some stations. A similar
tendency to underestimate the observed amplitude was
found by Dargaville et al. [2002]. Strictly speaking, ampli-
tude differences of 20% (as inferred from o ,04c1/Tops ratios)
are not statistically significant, according to the F-test
describe above.

[26] The poorest agreement between model and observa-
tions occurs at several stations in the ~33°S—45°S latitude
belt (CGO, BHD, CPT, AMS), where the relative amplitude
of the seasonal cycle (0 model/Tobs) 1 3 OF more. A sensitivity
study with only Northern Hemisphere land fluxes indicated
that local land and biomass burning sources in Australia and
South Africa are responsible for the large model amplitudes.
The discrepancies between model and observations could be
a sampling issue, since some of these stations only record
samples when the wind comes off the sea, despite our
attempts to address this issue by sampling the model at
the nearest windward ocean grid as per Gurney et al.
[2000].

[27] South of 45°S, agreement between model total CO,
and observations improves to some extent. Model and
observations are relatively well correlated (R ~ 0.8 to
0.95), but the model amplitude is too large by a factor of

1.5 to nearly 3. The GFED land and WHOI ocean tracers
are generally in phase both with each other and with
observations. The amplitude of either alone tends to match
observations, but the combination of land and ocean over-
estimates the observed amplitude. A sensitivity study indi-
cated that most of the land contribution at these latitudes
comes from the northern hemisphere, consistent with past
work [Randerson et al., 1997]. The agreement of total CO,
computed with the Takahashi ocean tracer arguably agrees
better with observations than total CO, computed with the
WHOI ocean tracer, since the former only overestimates the
observed amplitude at extratropical southern hemisphere
stations by a factor of ~2 rather than 2.5-3 for the latter;
but this result could be caused by compensating errors in the
land tracer.

[28] The tendency of models to overestimate the ampli-
tude of total CO, at extratropical southern stations has been
noted in previous comparisons at the South Pole station
[Randerson et al., 1997; Dargaville et al., 2002]. However,
some previous studies used earlier versions of the WHOI
ocean model or Takahashi et al. [2002] climatology, which
produced an oceanic seasonal cycle of smaller amplitude,
such that the resulting land-dominated CO, cycle agreed
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Figure 2. Taylor diagrams comparing the model seasonal cycle in total CO, to GLOBALVIEW
observations at 89 stations (see Table 2). Grey open left-facing triangles are extratropical (>25°N)
northern hemisphere stations, grey solid circles are tropical northern hemisphere stations, solid black
circles are tropical southern hemisphere stations, and solid black right-facing triangles are extratropical
(<—25°S) southern hemisphere stations. The six stations featured in Figure 1 are explicitly labeled with
their three-letter GLOBALVIEW code to help illustrate how the Taylor diagram quantifies the match
between model and observations in both phasing, shape, and amplitude (also see section 2.4.3 in text).
Perfect agreement with observations at 8 = 0, and 0,,,04e1/Tobs = | 1s marked with an X. (a) Best-case total
CO, from Table 1, (b) Takahashi ocean + GFED land + fossil fuel, (c) WHOI best-case ocean + NB land
+ fossil fuel, and (d) as in Figure 2a except only northern hemisphere stations are shown. Note: in
Figures 2a—2c¢, Bearing Head, New Zealand, is a large outlier (0,04e1/0obs ~ 6—8) and is not shown.

better with observations at southern hemisphere stations
[Dargaville et al., 2002; Gurney et al., 2004]. Two possible
explanations for the model tendency to overestimate the
amplitude of the seasonal cycle in the Southern Hemisphere
are (1) interhemispheric transport of the northern hemi-
sphere land signal is too strong or (2) the seasonal cycle of
the Southern Ocean CO, flux is wrong in phasing and/or
amplitude. The first explanation seems inconsistent with the
model’s general ability to capture the observed latitudinal
gradient in CO, (discussed below).

[20] An attempt to characterize the '*C signature of the
seasonal cycle at a range of southern stations based on the
intercept of Keeling plots of '*CO, vs. 1/CO, [Keeling,
1961; Randerson et al., 2002] was inconclusive as to the
source of the signal. The plots yielded intercepts of —18 to
—20 per mil, somewhere between a pure terrestrial C3
signal of ~—25 per mil and a pure ocean signal of ~—10
per mil, yet still implying a strong terrestrial component.
A more comprehensive analysis of the '*CO, data would
have to consider seasonal variability in the isotopic disequi-

librium fluxes associated with the gross terrestrial and
oceanic fluxes. It is possible that satellite column measure-
ments of the amplitude of the CO, seasonal cycle [Olsen
and Randerson, 2004; Crisp et al., 2004], when compared
to the seasonal cycle measured at surface stations, may help
resolve the question of the land vs. ocean contribution. Our
calculations suggest that the amplitude of the land tracer
cycle in the extratropical southern hemisphere is nearly as
large in the column as at the surface. In contrast, the column
amplitude of the ocean tracer cycle is only ~20% of the
surface amplitude.

[30] The Taylor diagrams of individual CO, tracers vs.
observations in Figure 3 are presented in an effort to
quantify the contributions of land, ocean and biomass
burning to the observed seasonal cycle. In the Northern
Hemisphere, both the WHOI model and Takahashi et al.
[2002] climatological ocean seasonal cycles are small, with
amplitudes typically ~10 + 10% the magnitude of observed.
The ocean cycles tend to be anticorrelated to observations,
i.e., out of phase, suggesting a slightly larger amplitude for
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Figure 3. Taylor diagrams comparing the model seasonal
cycle in component ocean, land, and biomass burning CO,
tracers to GLOBALVIEW observations at 89 stations.
Symbols are as described in Figure 2. The diagrams now
include two quadrants in order to display R values of <0,
which reflect a phase lag of at least 3 months between model
and observations. The three southern hemisphere stations
(CGO, SMO, PSA) featured in Figure 1 are explicitly labeled
with their three-letter GLOBALVIEW code. (a) WHOI best-
case ocean, (b) Takahashi ocean, (c) total GFED(= NEP +
BB), and (d) biomass burning (BB) component of GFED.
In Figure 3c, stations AMS, BHD, and CPT are not shown
because they are extreme outliers (0 mod/Tobs > 3).

the terrestrial biosphere seasonal cycle than would be
estimated if the observed and land cycles are assumed to
be exactly equivalent. In the Southern Hemisphere the
WHOI ocean tracer can account for 100 + 80% of the
amplitude of, and tends to be well correlated (R ~ 0.6 to
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0.9) with, the observed seasonal cycle. The Takahashi et al.
ocean tracer, in comparison, generally accounts for a similar
portion of the observed amplitude but is less well correlated
(R ~ 0.4 to 0.8) with observations. These results do not
necessarily imply that the WHOI ocean tracer is more
realistic than the Takahashi et al. tracer, since the model
land tracer also contributes substantially to total CO, at
Southern Ocean stations.

[31] The GFED land tracer typically can account for all or
nearly all the observed seasonal amplitude of CO, at both
northern and southern hemisphere stations. It is in phase
with observations at most stations, with some strong excep-
tions in the southern tropics, where it is anticorrelated to
observations. The biomass burning tracer makes a small
contribution to the seasonal amplitude at tropical stations,
and long range transport of this tracer can be considerable at
high southern latitudes, where the total seasonal cycle due
to other sources is small. In the northern extratropics,
biomass burning events tend to be episodic and thus do
not contribute substantially to the climatological seasonal
cycle.

[32] While the correlation coefficient R can reflect agree-
ment in either the shape or the phase of the agreement
between model and observations, the R values presented
here mainly reflect agreement in phasing, due to the simple
sinusoidal shape assumed by the mean seasonal fit in
Equation 1, which is dominated by the first harmonic
component at most stations. This is especially true in the
Northern Hemisphere, where R > 0.9 reflects perfect phase
agreement and 0.75 < R < 0.9 reflects a 1 month lag
between model and observations. In the Southern tropics,
the meaning of R is less easily interpreted, due to the
dual maxima in the seasonal cycles. In general, R > 0.8
indicates optimal phase agreement, while R < 0.6 indicates a
1 to 2 month lag. Shape also contributes more substantially
to R in the Southern extratropics, even though the cycles
there have a single seasonal maximum. R is generally >0.85
for perfect phase agreement, but may be as small as 0.45 to
0.65 for just a 1 month lag between model and observations
in cases where the observed cycle is flatter than the model
cycle (e.g., CGO in Figures 1 and 2). For the component
tracers in Figure 3, R values of <0 always reflect a phase lag
of at least 3 months or more, while 0 < R < 0.6 generally
reflects a 2 month lag with observations.

3.2. Latitudinal Gradient

[33] The model latitudinal gradient relative to the South
Pole generally agrees well with observations (Figure 4). A
comparison of mean 1997-2004 model total CO, vs.
observations at 89 GLOBALVIEW stations yields a corre-
lation of R = 0.87. The fossil fuel tracer dominates the
gradient, causing most of the north-south difference, but the
ocean tracer is important in creating a bulge at the equator,
where CO, outgases due to upwelling. The ocean tracer
mixing ratio in northern hemisphere mid to high latitudes is
lower than in the corresponding region in the southern
hemisphere due to the natural southward net transport of
inorganic carbon in the ocean. The “seasonal rectifier”
effect, i.e., positive annual mean CO, concentrations in
the Northern Hemisphere, is evident in the land tracer. This
well-documented effect results from trapping of terrestrial
respiration fluxes near the surface during shallow winter
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Figure 4. Mean value of total and component CO, tracers at 8 GLOBALVIEW stations averaged from
1997 to 2004. The annual mean for each tracer in each individual year was normalized relative to its
value at the South Pole (SPO) station. Triangles represent land-based stations. Circles are ocean stations.
Black symbols are GLOBALVIEW data, blue symbols are WHOI best-case ocean, cyan symbols are

Takahashi ocean, green symbols are GFED land, m:
best-case total CO, (defined in Table 1). The solid

agenta symbols are fossil fuel, red symbols are model
lines represent the average value per 10° latitude bin

for model total CO, (red) and observations (black). The standard deviation of the bins (not shown) is
~=£2 ppm for latitude bins >30°N and <+1 ppm elsewhere.

planetary boundary layer conditions [Denning et al., 1995].
The north-south land gradient in Figure 4 appears only
about half as strong as the cyclostationary MATCH:NCEP
gradient presented by Gurney et al. [2003], possibly result-
ing from the inclusion of AV in the current simulation,
given the +2 ppm interannual standard deviation of the
model results north of 30°N.

[34] The successful prediction of the observed latitudinal
gradient, in addition to the generally good simulation of
observed seasonal cycles described above, helps establish
the model as a credible tool for investigating IAV. It also
tends to contradict the hypothesis of overly strong inter-
hemispheric transport of the northern land signal, although
we cannot rule out that the good apparent agreement
between model and observations may result from a cancel-
lation of errors, e.g., between land and ocean tracers.

3.3. Interannual Variability

[35] Overall, the MATCH model is less able to simulate
interannual than seasonal variability in atmospheric CO,.
This result is illustrated below by showing atmospheric
growth rate anomalies at 6 selected GLOBALVIEW stations
(Figure 5) and by summarizing the model-observation
comparisons in Taylor diagrams at all 89 stations for
1997-2004 simulations of land and total CO, and at
33 stations for 1979—-2004 simulations of ocean and fossil
CO, (Figure 6). Figure 5 shows that the land tracer
dominates IAV in total CO, at the 3 selected northern
hemisphere stations (STM, LMP, MLO) and strongly influ-
ences the 3 southern hemisphere stations (PSA, CGO,

11

SMO). The ocean tracer also contributes to the amplitude
of TAV in total CO, at the southern stations, especially PSA
and CGO. The fossil fuel tracer accounts for only a small
fraction of the amplitude of TAV in total CO, at all stations,
with its largest contribution occurring at SMO.

[36] The Taylor diagram evaluation of best-case model
total CO, (Figure 6a) shows some success in reproducing
the shape and phasing of observed IAV (R ~ 0.4 to 0.8). Of
the 89 stations considered, the correlations are statistically
significant at 11 stations at the 5% confidence level and an
additional 9 are marginally significant at the 10% confi-
dence level (Table 2). All of the statistically significant
stations are in the northern hemisphere. Taylor diagrams of
the model component CO, tracers show that the highest
correlation coefficients (R) between observed and model
IAV are associated with the biomass burning component of
the GFED land tracer. Biomass burning causes a large
positive growth anomaly during the 1997—1998 El Niflo
that is matched in the observations at most stations. How-
ever, few of the apparent correlations between the biomass
burning tracer and observations are statistically significant,
according to our t-table analysis (Figure 2). The low
significance is due to the high autocorrelation in the
biomass burning time series, which are dominated by one
primary maximum associated with the 1997—1998 EI Nifio
and otherwise display relatively smooth behavior.

[37] Interestingly, the correlation coefficients between
observations and the net ecosystem production (NEP) tracer
tend to be more statistically significant, although only at
northern hemisphere stations, even though the R values are
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Figure 5. Atmospheric CO, growth rate anomalies at six selected stations calculated by deseasonalizing
and smoothing each time series, calculating the slope and removing the mean (see section 2.4.2 for
details). Thin black line with symbols is GLOBALVIEW observations, blue line is WHOI best-case
ocean, green line is total GFED land, red solid line is the best-case (CO-corrected) biomass burning
component of GFED, red dotted line is the uncorrected biomass burning component of GFED, magenta
line is fossil fuel. Solid heavy black line is model best-case total CO,. (a) Ocean Station, Norway,
(b) Lampedusa, Italy, (c) Mauna Loa, Hawaii, (d) Samoa, (¢) Cape Grim, Tasmania, and (f) Palmer
Station, Antarctica. The correlation between model total CO, and observations is significant at STM and

LMP at the 5% level or better, according to a t-test.

generally lower than for biomass burning (Table 2 and
Figures 6¢ and 6d). NEP is a noisier tracer than BB and
thus has lower autocorrelation and reproduces more than
one feature of observed AV at the statistically significant
stations (Figures 5a and 5b). The total GFED land term (BB +
NEP) matches observed IAV better than either individual term
alone, with statistically significant correlation coefficients at
16 out of 89 stations, although only 3 of these are at the 5%
confidence level or better (Table 2 and Figure 6b).

[38] The model captures the amplitude of observed vari-
ability relatively well at most stations in the extratropical
northern hemisphere, but tends to underestimate the ampli-
tude, typically by ~30%, in all other regions (Figure 6a). Still,
the current model captures a larger fraction of the observed
amplitude of AV than the simulations of Dargaville et al.
[2002], which underestimated the amplitude of observed [AV
by 60% or more, even at high latitude northern stations. IAV in
transport, ocean fluxes and improved estimates of biomass
burning all likely contribute to the increased amplitude of
IAV simulated by the current model.

[39] The original biomass burning fluxes from the for-
ward GFED model show a weaker pulse in 1997—1998 than

the a posteriori fluxes shown in Figure 5, which were
corrected based on a CO inversion (see description in
section 2.2.4). The corrected biomass burning tracer agrees
better with observations, particularly at the tropical and
southern hemisphere stations. The corrected and uncorrect-
ed BB tracers have similar correlation coefficients with
observations, but, whereas the corrected tracer captures
~40—80% of the observed amplitude in AV, the uncorrect-
ed tracer can account for only 50% or less (see additional
Taylor diagrams in auxiliary material, Figure S1)."

[40] Figure 6e suggests that ocean fluxes (from the WHOI
model) may account for at least ~10% of the amplitude of
observed IAV and up to 50% at extratropical southern
latitudes. However, the shape and phasing of variability is
largely uncorrelated to observations in either the northern or
southern hemisphere, indicating that the ocean is not the
primary driver of the observed atmospheric variations.
Similarly, the fossil fuel tracer is generally uncorrelated to
observed AV (Figure 6f), and accounts for 30% or less of

'Auxiliary materials are available in the HTML. doi:10.1029/
2007JG000408.
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Figure 6. Taylor diagrams comparing IAV in model total and component CO, tracer growth rate to
GLOBALVIEW observations. Symbols are as described in Figure 2. (a) Best-case total CO,, (b) GFED
land, (c) best-case biomass burning (BB) component of GFED, (d) Net ecosystem production (NEP)
component of GFED, (e) WHOI best-case ocean, and (f) fossil fuel. Figures 6a—6d include 89 stations
from 1997 to 2004 (Table 2). Figures 6¢ and 6f include 33 stations from 1979 to 2004 (Table 3).

the amplitude of IAV, with its largest contributions occur-
ring in the northern hemisphere. For the typical degrees of
freedom (v ~ 30, after accounting for autocorrelation)
involved in the 1979-2004 analysis of fossil and ocean
tracers, amplitude ratios (as inferred from o ,04e1/Tops 1atios)
of <0.7 reflect statistically significant differences between
model and observations. Thus, even though the correlation
coefficients between observations and fossil or ocean tracers
are statistically significant at a handful of stations, according
to our t-table test (Table 3), the small 0,04c1/Tobs Tatios at
those stations (Figures 6e and 6f) suggest that fossil and
ocean tracers can only partially account for the observed
IAV.

3.4. RMS Variability

[41] Figures 7 and 8 present an additional perspective by
showing the spatial patterns of root mean squared (RMS)
variability in the model CO, tracers. In Figure 7, the
seasonal variability in carbon dioxide is ~4 times larger
than the IAV (note different color bar scales in Figures 7a
and 7b). Land fluxes dominate the contribution to both
seasonal and interannual RMS variability in the northern
hemisphere and the tropics. Even in the extratropical south-
ern hemisphere, the land flux of CO, contributes a 0.4 to 0.7
portion of the seasonal variability and a larger portion, 0.5 to
1, of the IAV. The ocean carbon tracer contributes 0.1 or less
of total RMS variability over northern land and 0.3 or less
over northern ocean for both seasonal and interannual
RMS variability. Over the Southern Ocean, the ocean tracer

portion is comparable in importance to land for seasonal and
interannual RMS variability. In contrast, the land tracer,
whose signal is mainly transported from the northern hemi-
sphere according to sensitivity tests, tends to dominate
variability over the Antarctic continent.

[42] The fossil fuel portion of seasonal RMS variability is
0.1 or less in most regions, except near the equator. Fossil
fuel contributes more substantially to interannual RMS
variability in both hemispheres with portional values rang-
ing up to 0.7 to 1 in tropical regions. The relatively large
contribution of fossil fuel to seasonal and interannual
RMS variability near the equator appears to be related to
shifts in the ITCZ operating on the strong north-south fossil
CO, gradient.

[43] For both land and ocean CO,, the combination of
IAV in both surface fluxes and atmospheric transport leads
to more interannual RMS variability than for cyclostation-
ary fluxes with AV in transport alone (Figure 8). For ocean
tracers, the best-case WHOI ocean flux tracer has ~1.5—
3 times more RMS variability than the cyclostationary flux
tracer in most regions (Figures 8a—8c). For land tracers,
RMS variability is 1-5 times as high for the best-case
GFED land flux vs. the cyclostationary land flux with AV
in atmospheric transport (Figures 8e—8g). The ratios of
cyclostationary to best-case RMS variability help identify
areas where transport causes most of the 1AV, regardless of
the source variability. For ocean tracers, Figure 8c shows
that transport variability is very important in the North
Atlantic/Arctic Ocean, where surface fluxes are small due
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Figure 7. Absolute RMS variability (in ppmv) from 1997 to 2004 of best-case total CO,. (a) Seasonal,
(b) interannual (note different color bar scale). Portional contribution to RMS seasonal variability:
(c) best-case WHOI ocean, (¢) GFED land, (g) fossil fuel. Portional contribution to RMS interannual
variability (d) best-case WHOI ocean, (f) GFED land, (h) fossil fuel. Note that portional RMS
variabilities of ocean, land, and fossil fuel add up to >1 when cancellation among component tracers
occurs in the summing of total CO, (see section 2.4.4 for more details).

14 of 21



G01010 NEVISON ET AL.: SEASONAL AND INTERANNUAL CO, VARIABILITY

a) RMS 1997-2004 Cyclostationary Ocean b) RMS 1997-2004 Best Ocean
CO2 Annual RMS Anomaly CO2 Annual RMS Anomaly ppmv
1 1 1 1 1 1 o1 1

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0
0.05 0.1 0.15 0.2 0.3 0.4 0.05 0.1 0.15 0.2 0.3 0.4
c) RMS 1997-2004 Ratio Cyclostat./Best Ocean d) RMS 1997-2004 Best Ocean Surface Flux

RMS cyclostationary/best Ratio RMS cyclostationary/best CO2 Flux Annual RMS Anomaly mol/m2/yr

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0

| I |
01 02 03 04 05 06 07 08 09 1 02 04 06 08 1 12 14 16 18 2
e) RMS 1997-2004 Cyclostationary Land f) RMS 1997-2004 Best (GFED) Land

CO2 Annual RMS Anomaly CO2 Annual RMS Anomaly
1 1 1 1 1 1 1 1 1 1

0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0  30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0
01 02 05 075 1 125 15 2 25 3 01 02 05 075 1 125 15 2 25 3
g) RMS 1997-2004 Ratio Cyclostat./GFED Land h) RMS 1997-2004 Best Land Surface Flux
RMS cyclostationary/GFED Ratio RMS cyclostationary/GFED CO2 Flux Annual RMS Anomaly mol/m2/yr
OON il ) 1l 1 [ B |

60N

30N

308
60S
90S
0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W  30W 0
| e (| [
0.1 0!2 OL 0!4 0!5 OL OL Olﬂ 0.9 1 4 l 1|2 1|6 20

Figure 8. RMS interannual variability from 1997 to 2004, (a) cyclostationary WHOI ocean (ppmv),
(b) best-case WHOI ocean (ppmv), (¢) ratio of Figure 8a over Figure 8b, (d) best-case WHOI surface flux
(mol/m*/yr), (e) cyclostationary neutral biosphere land (ppmv), (f) GFED land (ppmv), (g) ratio of
Figure 8¢ over Figure 8f, and (h) best-case GFED surface flux (mol/m?/yr).
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Figure 9.

IAV at Mauna Loa of observed CO, (thin solid line), best-case WHOI ocean tracer (heavy

solid line), and MIT ocean tracer (dot-dashed line). Shaded bars represent warm ENSO periods defined
based on a sustained Southern Oscillation Index (Tahiti — Darwin sea level pressure difference anomaly)
of <—1 and usually coinciding, except during the weak sustained El Nifio of the early 1990s, with a sea
surface temperature anomaly in the tropical central to eastern Pacific of >1°C (http://www.cpc.noa.gov/

data/indices/sstoi.indices).

to sea ice coverage and the ratio of cyclostationary/best-case
RMS is ~1. For land tracers, Figure 8g shows there are few
coherent areas where transport variability is dominant.

4. Oceanic Contribution to IAV
4.1. ENSO Events

[44] Figure 9 looks specifically at the link between the
El Nifio/Southern Oscillation (ENSO) and the contribution
of ocean fluxes to IAV in the atmospheric CO, growth
anomaly. Results are shown from 1979—-2004 at Mauna Loa
station, which is often taken as representative of global
atmospheric CO, but which is also well situated to register
changes over the tropical Pacific, where ENSO events are
centered. Figure 9 shows decreases in the WHOI ocean CO,
tracer during the 1982—1983, early 1990s, 1997—1998 and
2002 ENSO events. No obvious decrease occurs during the
1987—-1988 ENSO event. The largest of the ENSO-related
decreases in the ocean CO, growth anomaly occurs during
the early 1990s, which experienced relatively weak but
unusually long and sustained El Nifio conditions. Similar
results are seen in 1986—1997 simulations using CO, fluxes
from the MIT ocean model. The mechanism behind the
decrease in the ocean CO, tracer during El Nifio conditions
is well understood. The equatorial ocean, especially the
eastern tropical Pacific, is normally one of the major regions
of oceanic CO, outgassing. Under El Nifio conditions,
outgassing is decreased by a thickening of the thermocline
in the eastern tropical Pacific and a reduction in the
upwelling of CO,-enriched deepwater [Feely et al., 1999].
Slackening of tradewinds during El Nifio events can also

contribute to reduced air-sea transfer of CO, [McKinley et
al., 2004a].

[45] In contrast to the model ocean tracers, the observed
CO, growth rate at Mauna Loa increases strongly after most
of the ENSO events, especially in 1997—1998. The obser-
vations in Figure 9 are supported by a large body of
literature, in which positive growth rate anomalies in
atmospheric CO, are well known to occur during warm
ENSO conditions [Bacastow, 1976; Dettinger and Ghil,
1998; Rayner et al., 1999; Prentice et al., 2001; Baker et
al., 2006]. These positive growth anomalies must be caused
by increased CO, outgassing from land, since ocean CO,
fluxes decrease during El Nifio events, as discussed above.
Warm ENSO conditions produce drought conditions over
tropical land, particularly over Southeast Asia, which can
lead to increased net CO, efflux due to a reduction in CO,
uptake by photosynthesis [Hirano et al., 2007] or an
increase in CO, release by fire and/or heterotrophic respi-
ration. Evidence involving complementary atmospheric
carbon monoxide (CO) data suggests that enhanced CO,
release associated with drought-induced fire may cause ~2/3
of the positive CO, growth anomaly [Van der Werf et al.,
2004; Randerson et al., 2005]. The model results presented
earlier (Figures 5 and 6), in which some of the strongest
correlations between observed and model IAV were driven
by the biomass burning component of the land tracer, tend
to support this conclusion. The lack of available GFED land
CO, fluxes prior to 1997 precludes a more long-term
evaluation of the terrestrial model tracer response during
earlier ENSO events.
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Figure 10. Interannual variability in integrated surface fluxes, calculated as deviations from the mean

after deseasonalizing the ocean model results with a 12-month running average with three successive
triangular smoothings. The heavy black line is the best-case WHOI ocean model from 1979 to 2004, and
the heavy gray line is the MIT ocean model from 1986 to 1997. The thin black line is the AV in ocean
fluxes inferred by the Transcom3 atmospheric CO, inversion [Baker et al., 2006]. Regions are defined
based on aggregated Transcom3 regions: (a) global ocean, (b) Southern Ocean (all sectors south of 45°S),
(¢) Tropical Pacific (= 15° around the equator), (d) North Pacific (north of 16° ending at Arctic Ocean),
(e) North Atlantic (north of 16°N, including Arctic Ocean), and (f) Indian Ocean (all areas north of 45°S).
Note that the Transcom3 fluxes in the North Atlantic and Indian Oceans are not considered robust [Baker
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et al., 2006] and therefore not shown.

[46] The tendency of the model ocean tracer to decrease
during El Nifio events suggests that an even stronger terres-
trial drought/fire response may be needed during the events
to counteract the ocean signal and explain the observed
positive growth rate anomalies. Interestingly, the observed
CO, growth rate begins to decline well before the ocean CO,
tracer. In this respect, the WHOI model does not support the
hypothesis that the ocean is responsible for decrease in the
CO, growth rate that is generally observed before the onset of
an El Nifio event [Rayner et al., 1999; Dargaville et al.,
2002]. A similar result was found by McKinley et al. [2004a]
using the MIT ocean model.

[47] A period of agreement in phasing between the
observations and the WHOI and MIT ocean model tracers
occurs during the early 1990s, when all 3 tracers show a
decrease in the CO, growth anomaly (Figure 9). The ENSO
event of the early 1990s is an exception to the more typical
ENSO patterns and responses described above. The early
1990s was a weak but sustained El Nifio period that

coincided with the eruption of the Mount Pinatubo volcano
(in June 1991). The eruption injected a large amount of
sulphate aerosol into the stratosphere, resulting in increased
deflection of solar radiation and global cooling for several
years thereafter. Most previous studies have attributed the
observed atmospheric CO, decrease of the early 1990s to a
land biosphere response to the Pinatubo eruption [Roderick
etal.,2001; Gu et al., 2003], although the exact mechanism
is poorly understood [Prentice et al., 2001; Krakauer and
Randerson, 2003; Baker et al., 2006]. The current study
suggests that the ocean may have accounted for 20—25% of
this decrease.

4.2. Surface Ocean Fluxes

[48] Examination of the integrated model surface ocean
fluxes suggests that the tropical Pacific dominates AV
(Figure 10). McKinley et al. [2004a] reached a similar
conclusion using the MIT model (which is also shown in
Figure 10) and attributed most of the tropical Pacific
variability to ENSO events. During these events, large
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changes in upwelling, winds and sea surface temperature
converge over sustained and correlated spatiotemporal
scales to make a discernible impact on atmospheric CO».
The standard deviation of the AV in the integrated tropical
Pacific CO, flux is £0.15 PgC/yr from 1979 to 2004 for the
WHOI model and £0.18 PgCl/yr from 1986 to 1997 for the
MIT model. The Southern Ocean makes the second most
import contribution to global ocean AV, with a standard
deviation of +0.07 PgC/yr for both WHOI and MIT
(Figure 10). Both models both predict small IAV in the
North Pacific, North Atlantic and Indian Oceans CO, fluxes
with standard deviations of only +0.02 to 0.05 PgClyr for
these regions.

[49] The similarity in IAV predicted by the WHOI and
MIT ocean models is intriguing, particularly considering
that these two ocean carbon models have quite different
biogeochemical algorithms (a prognostic ecosystem model
vs. a simple export production parameterization) and hori-
zontal resolutions. The similarity in their IAV predictions
may indicate that large-scale surface physical drivers, e.g.,
heat fluxes and winds are ultimately responsible for the flux
IAV and that these features can be captured in models with
relatively coarse horizontal resolutions and simple ecosys-
tem parameterizations.

[s0] In contrast to the small IAV in the integrated surface
fluxes shown in Figure 10, the standard deviation of the
atmospheric growth rate anomaly in the MATCH/WHOI
CO, ocean tracer from 1979-2004 averages +0.35 Pg C/yr
at the 33 individual GLOBALVIEW stations summarized in
Figure 6e, with a minimum to maximum range of =1 Pg C/
yr, on average, for the stations and as high as +2.3 Pg C/yr
at some stations. (This calculation employs the simple
conversion 1 ppmv/yr = 2.12 PgC/yr, assuming mixing
through the full atmosphere.) In addition, the latitude-
longitude plot of RMS variability in the WHOI surface
fluxes (Figure 8d) suggests high variability in the North
Atlantic, North Pacific and Southern Ocean. This variability
must be spatially and temporally incoherent, since it tends
to be smoothed out when integrated over broad regions, as
in Figure 10. However, one can hypothesize that the local
variability in surface ocean fluxes seen in Figure 8d
interacts with local variability in transport to create larger
variability in atmospheric CO, than one might predict based
on the integrated surface flux results in Figure 10. This
hypothesis is tested below.

[5s1] The comparison of regional and global ocean fluxes
from the Transcom3 atmospheric CO, inversion to the
integrated WHOI and MIT surface fluxes presents some
interesting contrasts (Figure 10). In all regions except for
the tropical Pacific, the IAV in the Transcom3 fluxes
exceeds that predicted by the ocean models by at least a
factor of 2 and up to a factor of 4. The Transcom3 results
represent the a posteriori surface carbon fluxes inferred
from atmospheric CO, observations at a large range of
GLOBALVIEW stations after accounting for the effects of
atmospheric transport (using a wide range of transport
models) on a prescribed a priori surface flux, which is
“corrected” during the atmospheric inversion. Transcom3
used forward simulations of the Takahashi et al. [1999]
database, an carlier version of the surface ocean CO, flux
climatology used in the current study, to precorrect atmo-
spheric CO, data for ocean influences. Transcom3 then
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assumed a spatially uniform flux pattern within each of its
11 ocean regions as the a priori ocean flux. The Transcom3
tropical Pacific flux is generally similar to the ocean model
surface fluxes, but Transcom3 does not predict the decrease
in the early 1990s. On the contrary, Transcom3 predicts a
large increase in the global ocean flux during this time. In
other regions, i.e., the Southern Ocean, Transcom3 and the
WHOI model display some coherence, but agreement is
poor for the North Pacific and Global Ocean. Transcom3
fluxes in the North Atlantic and Indian Oceans are not
considered robust [Baker et al., 2006].

[52] The reasons for the disagreements between Trans-
com3 and the two ocean models presented in Figure 10 may
include the fact that Transcom3 used cyclostationary trans-
port (with different models choosing different years) in its
basis functions or that Transcom3 a priori ocean flux
uncertainties are large enough that the inversions may
assign variability to ocean regions that actually is due to
land regions [Baker et al., 2006]. An additional factor may
be that inversions work backward from atmospheric data at
individual monitoring stations. As discussed above, atmo-
spheric data contain substantially more variability than
regionally integrated surface fluxes, due to the interaction
of transport with spatiotemporal variability in the surface
fluxes, which itself tends to be smoothed out when averaged
over broad ocean regions.

[53] To test this latter potential bias in atmospheric inver-
sions, we performed a forward simulation with MATCH
using a surface ocean flux in which the TAV calculated by
the Transcom3 atmospheric CO, inversion from 1988 to
2003 [Baker et al., 2006] was prescribed within each of the
11 Transcom3 ocean regions, with the spatial variability
within each region distributed in a uniform flux pattern. At
individual grid cells in the Southern Ocean and North
Pacific, the RMS variability of this “Transcom” CO, flux
was only 0.3 mol m 2 yr ', i.e., generally a factor of 3—7
times smaller than the RMS variability of the WHOI fluxes
(Figure 8d). However, the “Transcom”/MATCH and
WHOI/MATCH atmospheric CO, growth rate anomalies
at individual monitoring stations within the Southern Ocean
and North Pacific regions showed [AV of more or less
comparable amplitude. This result suggests that surface
fluxes whose TAV is small locally (i.e., at individual grid
cells) but spatiotemporally correlated across the region can
yield IAV in atmospheric CO, growth anomalies of similar
amplitude as fluxes whose IAV is locally large but spatio-
temporally uncorrelated. In the former case, the IAV in
surface fluxes is reinforced when the fluxes are integrated
across the region, while in the latter case integration leads to
cancellation of IAV in the surface fluxes. The implication of
this result is that it may be inappropriate to extrapolate to
overly broad ocean regions the surface flux variability that
has been inferred from the IAV in atmospheric CO, ob-
served at individual monitoring sites.

[54] Rddenbeck et al. [2003] have approached this prob-
lem by using an inversion strategy that confines the influ-
ence of monitoring station data to the area close to the
station. As a result, the CO, fluxes for large regions of the
ocean with no nearby monitoring station do not change
substantially from their a priori values. When integrated
globally, this results in a low ocean interannual variability,
in substantially better agreement with ocean models than the
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Transcom3 approach [McKinley et al., 2004b]. This can be
interpreted to confirm the small variability of the ocean
models but alternatively may simply reflect the fact that data
coverage over the ocean is sparse.

5. Summary/Conclusions

[s55s] We have presented forward transport model simula-
tions of atmospheric CO, based on interannually varying land
and ocean fluxes that are transported by interannually varying
winds. The model is reasonably skilled at reproducing the
seasonal cycles of atmospheric CO, observed at 89 GLOBAL-
VIEW monitoring stations. Performance is better in the
northern hemisphere, where the land tracer dominates the
seasonal cycle, than in the southern hemisphere, where ocean
fluxes contribute substantially to the seasonal cycle. The
model has lower skill at reproducing observed IAV in atmo-
spheric CO,, especially in the southern hemisphere. However,
the model does capture the strong positive growth anomaly
observed during the 1997—1998 ENSO event and supports the
hypothesis that biomass burning fluxes drive much of this [AV,
although longer time series with several major biomass
burning events are needed to establish a statistically significant
correlation between model and observed IAV. The model
predicts that ocean CO, fluxes contribute only a <0.1 to 0.3
portion to seasonal and interannual variability in atmospheric
CO; in the northern hemisphere, but may contribute as much
as half of both seasonal and interannual variability in the
extratropical southern hemisphere.

[s6] In the future, we expect more modeling centers to
predict carbon fluxes interactively inside coupled carbon
cycle climate models [Friedlingstein et al., 2006]. The fact
that the state-of-the-art models presented here are only
partially able to capture the observed variability in CO,,
especially on interannual timescales when forced with
realistic meteorology and fire events, suggests that more
work needs to be done in forward mode to improve terrestrial
and ocean carbon process models and in inverse mode to
assimilate CO,, CO, flux and other biogeochemical data.

[57] The atmospheric growth rate of the ocean model CO,
tracer generally decreases during El Nifio events. In contrast,
the observed atmospheric CO, growth anomaly is positive
during most El Nifio events, consistent with increased release
of CO, from net ecosystem production and/or biomass
burning. An interesting exception occurs during the weak
but sustained El Nifio of the early 1990s, which coincides
with the post-Pinatubo period. The ocean model tracer can
account for 20—25% of the observed dip in the atmospheric
CO, growth rate during this time. This result is supported by
a second ocean model (MIT) but not by the Transcom3 CO,
atmospheric inversion, which predicts a positive CO, flux
anomaly from the ocean during the early 1990s.

[58] The combination of IAV in both surface fluxes and
transport typically yields two or more times as much
variability than when the surface flux is cyclostationary.
This is true for both land and ocean fluxes. The interaction
of variable but spatiotemporally incoherent surface ocean
fluxes with transport can help bring out larger variability in
the atmosphere than is seen in surface fluxes themselves
when the latter are integrated over broad regions. These
factors can help explain some of the discrepancies between
ocean models, which generally predict low variability in
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CO, fluxes, and atmospheric-based methods, which infer
larger variability in ocean CO, fluxes.
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