117 research outputs found
Modern trends in American teacher training
Thesis (Ed.M.)--Boston University, 1946. This item was digitized by the Internet Archive
Recommended from our members
Mechanical Assessment of the Waste Package Subject to Vibratory Ground Motion
Recommended from our members
Mechanical Assessment of the Drep Shield Subject to Vibratory Motion and Dynamic and Static Rock Loading
The purpose of the drip shield (DS) is to divert water that may seep into emplacement drifts from contacting the waste packages, and to protect the waste packages from impact or static loading from rockfall. The objective of this document is to summarize, into one location, the results of a series of supporting engineering calculations that were developed to study the effect of static and dynamic loads on the mechanical performance of the DS. The potential DS loads are a result of: (1) Potential earthquake vibratory ground motion, and resulting interaction of the DS, waste package and pallet, and drift invert; (2) Dynamic impacts of rockfall resulting from emplacement drift damage as a result of earthquake vibratory motion; and (3) Static load of the caved rock rubble that may come to rest on the DS as a result of vibratory motion or from time-dependent yielding of the rock mass surrounding the emplacement drift. The potential mechanical failure mechanisms that may result from these loads include: (1) Overturning and/or separation of the interlocking DS segments; (2) Loss of structural integrity and stability of the DS, including excessive deformation or buckling; and (3) Localized damage to the top and side-wall plates of the DS. The scope of this document is limited to summarizing results presented in the supporting calculations in the areas of analysis of the potential for DS collapse, and determination of the damaged surface area of the DS plates. New calculations are presented to determine whether or not separation of DSs occur under vibratory motion
Recommended from our members
Seismic Studies
This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports
In-situ evidence for dextral active motion at the Arabia-India plate boundary
International audienceThe Arabia-India plate boundary--also called theOwen fracture zone--is perhaps the least-known boundary among large tectonic plates1-6. Although it was identified early on as an example of a transform fault converting the divergent motion along the Carlsberg Ridge to convergent motion in the Himalayas7, its structure and rate of motion remains poorly constrained. Here we present the first direct evidence for active dextral strike-slip motion along this fault, based on seafloor multibeam mapping of the Arabia-India-Somalia triple junction in the northwest Indian Ocean. There is evidence for 12km of apparent strike-slip motion along the mapped segment of the Owen fracture zone, which is terminated to the south by a 50-km-wide pull-apart basin bounded by active faults. By evaluating these new constraints within the context of geodetic models of global plate motions, we determine a robust angular velocity for the Arabian plate relative to the Indian plate that predicts 2-4mmyr−1 dextral motion along the Owen fracture zone. This transformfault was probably initiated around 8 million years ago in response to a regional reorganization of plate velocities and directions8-11, which induced a change in configuration of the triple junction. Infrequent earthquakes of magnitude 7 and greater may occur along the Arabia-India plate boundary, unless deformation is in the formof aseismic creep
Neotectonics of the Owen Fracture Zone (NW Indian Ocean): structural evolution of an oceanic strike-slip plate boundary
International audienceThe Owen Fracture Zone is a 800 km-long fault system that accommodates the dextral strike-slip motion between India and Arabia plates. Because of slow pelagic sedimentation rates that preserve the seafloor expression of the fault since the Early Pliocene, the fault is clearly observed on bathymetric data. It is made up of a series of fault segments separated by releasing and restraining bends, including a major pull-apart basin at latitude 20°N. Some distal turbiditic channels from the Indus deep-sea fan overlap the fault system and are disturbed by its activity, thus providing landmarks to date successive stages of fault activity and structural evolution of the Owen Fracture Zone from Pliocene to Present. We determine the durability of relay structures and the timing of their evolution along the principal displacement zone, from their inception to their extinction. We observe subsidence migration in the 20°N basin, and alternate activation of fault splays in the vicinity of the Qalhat seamount. The present-day Owen Fracture Zone is the latest stage of structural evolution of the 20-Myr-old strike-slip fault system buried under Indus turbiditic deposits whose activity started at the eastern foot of the Owen Ridge when the Gulf of Aden opened. The evolution of the Owen Fracture Zone since 3-6 Myr reflects a steady state plate motion between Arabia and India, such as inferred by kinematics for the last 20 Myr period. The structural evolution of the Owen Fracture Zone since 20 Myr- including fault segments propagation and migration, pull-apart basin opening and extinction - seems to be characterized by a progressive reorganisation of the fault system, and does not require any major kinematics change
Do ridge-ridge-fault triple junctions exist on Earth? Evidence from the Aden-Owen-Carlsberg junction in the NW Indian Ocean
International audienceThe triple junctions predicted to be ridge^ridge^fault (RRF) types on the basis of large- scale plate motions are theAzores triple junction between theGloria Fault and theMid-AtlanticRidge, the Juan Fernandez triple junction between the ChileTransform and the East Paci¢c Rise and the Aden^ Owen^Carlsberg (AOC) triple junction between theOwen fracture zone (OFZ) and theCarlsberg and Sheba ridges. In the ¢rst two cases, the expected RRF triple junction does not exist because the transform fault arm of the triple junction has evolved into a divergent boundary before connecting to the ridges.Here, we report the results of a marine geophysical survey of the AOC triple junction, which took place in 2006 aboard the R/VBeautemps-Beaupre¤.We show that a rift basin currently forms at the southern end of theOFZ, indicating that a divergent plate boundary between Arabia and India is developing at the triple junction.The connection of this boundary with the Carlsberg and Sheba ridges is not clearly delineated and the triple junction presently corresponds to awidespread zone of distributed deformation.The AOC triple junction appears to be in a transient stage between a former triple junction of the ridge^fault^fault type and a future triple junction of the ridge^ridge^ridge (RRR) type. Consequently, the known three examples of potential RRF triple junctions are actually of the RRR type, and RRF triple junctions do not presently exist on Eart
Evolution and dynamics of a fold-thrust belt: The Sulaiman Range of Pakistan
We present observations and models of the Sulaiman Range of western Pakistan that shed
new light on the evolution and deformation of fold-thrust belts. Earthquake source inversions
show that the seismic deformation in the range is concentrated in the thick pile of sediments
overlying the underthrusting lithosphere of the Indian subcontinent. The slip vectors of the
earthquakes vary in strike around the margin of the range, in tandem with the shape of the
topography, suggesting that gravitational driving forces arising from the topography play an
important role in governing the deformation of the region. Numerical models suggest that the
active deformation, and the extreme plan-view curvature of the range, are governed by the
presence of weak sediments in a pre-existing basin on the underthrusting Indian Plate. These
sediments affect the stress-state in the over-riding mountain range and allow for the rapid
propagation of the nose of the range and the development of extreme curvature and laterally
varying surface gradients.This study forms part of the NERC- and ESRC-funded project
‘Earthquakes Without Frontiers’. Our thanks go to Jerome Neufeld
for many interesting coffee-time discussions, and James Jackson
and Dan McKenzie, for comments on the manuscript. We thank
Chris Morley and one anonymous reviewer for helpful comments
on the manuscript.This article has been accepted for publication in in Geophysical Journal International ©: (2015) 201(2): 683-710, doi: 10.1093/gji/ggv005 , First published online March 9, 2015, Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved
- …
